A Machine-Learning Framework for Automating Well-Log Depth Matching
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Language independent query-by-example spoken term detection (QbE-STD) is the problem of retrieving audio documents from an archive, which contain a spoken query provided by a user. This is usually casted as a hypothesis testing and pattern matching problem ...
Data from animal-borne inertial sensors are widely used to investigate several aspects of an animal's life, such as energy expenditure, daily activity patterns and behaviour. Accelerometer data used in conjunction with machine learning algorithms have b ...
Our brain continuously self-organizes to construct and maintain an internal representation of the world based on the information arriving through sensory stimuli. Remarkably, cortical areas related to different sensory modalities appear to share the same f ...
Learning to embed data into a space where similar points are together and dissimilar points are far apart is a challenging machine learning problem. In this dissertation we study two learning scenarios that arise in the context of learning embeddings and o ...
Recently, the interest in haptic feedback is growing thanks to its ability to enhance the interaction with Human Machine Interfaces (HMIs). This research project is exploring the potential of machine learning combined with piezoelectric actuators to genera ...
Time series classification (TSC) is an important and challenging problem in machine learning. In this work, we tackle the problem of TSC by first applying a Bidirectional Encoder Representations from Transformers (BERT) model, and then applying a convoluti ...
Federated Learning (FL) is a machine learning setting where many devices collaboratively train a machine learning model while keeping the training data decentralized. In most of the current training schemes the central model is refined by averaging the par ...
Learning to embed data into a space where similar points are together and dissimilar points are far apart is a challenging machine learning problem. In this dissertation we study two learning scenarios that arise in the context of learning embeddings and o ...
In this paper, we overview the semantic gap problem in multimedia and discuss how machine learning and symbolic AI can be combined to narrow this gap. We describe the semantic gap in terms of a classical architecture for multimedia processing and discuss a ...
This paper brings together machine learning and investigative journalism to examine sockpuppets accounts, a historical breed of fake accounts that are non-automated and human-controlled. Due to their flexible and human-centered nature, sockpuppets pose a c ...