Variational Inference with Mixture Model Approximation for Applications in Robotics
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This paper i) compares parametric and semi-parametric representations of unobserved heterogeneity in hierarchical Bayesian logit models and ii) applies these methods to infer distributions of willingness to pay for features of shared automated vehicle (SAV ...
Travel time distributions (TTDs) are concise descriptions of transport processes in catchments based on water ages, and they are particularly efficient as lumped hydrological models to simulate tracers in outflows. Past studies have approximated catchment ...
The efficiency of stochastic particle schemes for large scale simulations relies on the ability to preserve a uniform distribution of particles in the whole physical domain. While simple particle split and merge algorithms have been considered previously, ...
2019
This study presents a method for computing likelihood ratios (LRs) from multimodal score distributions, as the ones produced by some commercial off-the-shelf automated fingerprint identification systems (AFISs). The AFIS algorithms used to compare fingerma ...
We introduce an online outlier detection algorithm to detect outliers in a sequentially observed data stream. For this purpose, we use a two-stage filtering and hedging approach. In the first stage, we construct a multimodal probability density function to ...
We present an improved analysis of the Euler-Maruyama discretization of the Langevin diffusion. Our analysis does not require global contractivity, and yields polynomial dependence on the time horizon. Compared to existing approaches, we make an additional ...
We propose a new variational inference method based on a proximal framework that uses the Kullback-Leibler (KL) divergence as the proximal term. We make two contributions towards exploiting the geometry and structure of the variational bound. Firstly, we p ...
A novel approach is presented for constructing polynomial chaos representations of scalar quantities of interest (QoI) that extends previously developed methods for adaptation in Homogeneous Chaos spaces. In this work, we develop a Bayesian formulation of ...
ROYAL SOC2018
,
We consider the previously unsolved problem of sampling paths according to a given distribution from a general network. The problem is difficult because of the combinatorial number of alternatives, which prohibits a complete enumeration of all paths and he ...
The currently adopted practice for uncertainty quantification of thermal-hydraulics code predictions is done through statistical sampling where the code is evaluated multiple times using different values of input parameters that are randomly generated acco ...