Estimating The Degree of Sleepiness by Integrating Articulatory Feature Knowledge In Raw Waveform Based CNNs
Publications associées (32)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Modeling directly raw waveforms through neural networks for speech processing is gaining more and more attention. Despite its varied success, a question that remains is: what kind of information are such neural networks capturing or learning for different ...
Language independent query-by-example spoken term detection (QbE-STD) is the problem of retrieving audio documents from an archive, which contain a spoken query provided by a user. This is usually casted as a hypothesis testing and pattern matching problem ...
This paper addresses the problem of detecting speech utterances from a large audio archive using a simple spoken query, hence referring to this problem as "Query by Example Spoken Term Detection" (QbE-STD). This still open pattern matching problem has been ...
We show that confidence measures estimated from local posterior probabilities can serve as objective functions for training ANNs in hybrid HMM based speech recognition systems. This leads to a segment-level training paradigm that overcomes the limitation o ...
In hidden Markov model (HMM) based automatic speech recognition (ASR) system, modeling the statistical relationship between the acoustic speech signal and the HMM states that represent linguistically motivated subword units such as phonemes is a crucial st ...
Second-order pooling, a.k.a. bilinear pooling, has proven effective for deep learning based visual recognition. However, the resulting second-order networks yield a final representation that is orders of magnitude larger than that of standard, first-order ...
The goal of this thesis is to improve current state-of-the-art techniques in speaker verification
(SV), typically based on âidentity-vectorsâ (i-vectors) and deep neural network (DNN), by exploiting diverse (phonetic) information extracted using variou ...
Speech is a complex signal produced by a highly constrained articulation machinery. Neuro and psycholinguistic theories assert that speech can be decomposed into molecules of structured atoms. Although characterization of the atoms is controversial, the ex ...
Modeling directly raw waveform through neural networks for speech processing is gaining more and more attention. Despite its varied success, a question that remains is: what kind of information are such neural networks capturing or learning for different t ...
Model-based approaches to Speaker Verification (SV), such as Joint Factor Analysis (JFA), i-vector and relevance Maximum-a-Posteriori (MAP), have shown to provide state-of-the-art performance for text-dependent systems with fixed phrases. The performance o ...