Apprentissage de représentationsEn apprentissage automatique, l'apprentissage des caractéristiques ou apprentissage des représentations est un ensemble de techniques qui permet à un système de découvrir automatiquement les représentations nécessaires à la détection ou à la classification des caractéristiques à partir de données brutes. Cela remplace l'ingénierie manuelle des fonctionnalités et permet à une machine d'apprendre les fonctionnalités et de les utiliser pour effectuer une tâche spécifique.
Graphe complémentaireframe|right|Le graphe de Petersen, à gauche et son complémentaire, à droite. En théorie des graphes, le graphe complémentaire ou graphe inversé d'un graphe simple est un graphe simple ayant les mêmes sommets et tel que deux sommets distincts de soient adjacents si et seulement s'ils ne sont pas adjacents dans . Le graphe complémentaire ne doit pas être confondu avec le complémentaire dans le sens de la théorie des ensembles. En effet, l'ensemble des sommets de G reste inchangé. Le complémentaire du complémentaire est le graphe original.
Réseau neuronal résidueldroite|vignette| Forme canonique d'un réseau neuronal résiduel. Une couche l − 1 est ignoré sur l'activation de l − 2. Un réseau neuronal résiduel ( ResNet ) est un réseau neuronal artificiel (ANN). Il s'agit d'une variante du HighwayNet , le premier réseau neuronal à action directe très profond avec des centaines de couches, beaucoup plus profond que les réseaux neuronaux précédents. Les sauts de connexion ou "raccourcis" sont utilisés pour passer par-dessus certaines couches ( les HighwayNets peuvent également avoir des poids pour les saut eux-mêmes, grâce à une matrice de poids supplémentaire pour leurs portes).
Transmission de donnéesLa transmission de données désigne le transport de données, quel que soit le type d'information, d'un endroit vers un autre, par un moyen physique ou numérique. Historiquement, La transmission se faisait par signaux visuels (tel que la fumée ou les sémaphores), sonores (comme le langage sifflé des Canaries), courrier papier avant d'utiliser des signaux numériques comme le code Morse sur des fils en cuivre.
Science des réseauxvignette|Les liens de la network science La Science des Réseaux, ou Network Science, est une discipline scientifique émergente qui se donne pour objet l'étude des relations, liens et interconnexions entre les choses, et non les choses en elles-mêmes. Champ interdisciplinaire de recherche, elle s'applique en physique, biologie, épidémiologie, science de l'information, science cognitive et réseaux sociaux. Elle vise à découvrir des propriétés communes au comportement de ces réseaux hétérogènes via la construction d'algorithmes et d'outils.
Théorie spectrale des graphesEn mathématiques, la théorie spectrale des graphes s'intéresse aux rapports entre les spectres des différentes matrices que l'on peut associer à un graphe et ses propriétés. C'est une branche de la théorie algébrique des graphes. On s'intéresse en général à la matrice d'adjacence et à la matrice laplacienne normalisée. Soit un graphe , où désigne l'ensemble des sommets et l'ensemble des arêtes. Le graphe possède sommets, notés et arêtes, notées .
Correlation clusteringClustering is the problem of partitioning data points into groups based on their similarity. Correlation clustering provides a method for clustering a set of objects into the optimum number of clusters without specifying that number in advance. Cluster analysis In machine learning, correlation clustering or cluster editing operates in a scenario where the relationships between the objects are known instead of the actual representations of the objects.
Réseau de neurones à impulsionsLes réseaux de neurones à impulsions (SNNs : Spiking Neural Networks, en anglais) sont un raffinement des réseaux de neurones artificiels (ANNs : Artificial Neural Networks, en anglais) où l’échange entre neurones repose sur l’intégration des impulsions et la redescente de l’activation, à l’instar des neurones naturels. L’encodage est donc temporel et binaire. Le caractère binaire pose une difficulté de continuité au sens mathématique (cela empêche notamment l’utilisation des techniques de rétropropagation des coefficients - telle que la descente de gradient - utilisées classiquement dans les méthodes d'apprentissage).
Réseau de stockage SANvignette|upright=1.5|Protocoles d'accès à un SAN. En informatique, un réseau de stockage, ou SAN (de l'anglais Storage Area Network), est un réseau spécialisé permettant de mutualiser des ressources de stockage. vignette|Différence entre SAN et NAS. Un réseau de stockage se différencie des autres systèmes de stockage tels que le NAS (Network attached storage) par un accès bas niveau aux disques. Pour simplifier, le trafic sur un SAN est très similaire aux principes utilisés pour l'utilisation des disques internes (ATA, SCSI).
Laplacien discretEn mathématiques, le laplacien discret est une analogie du laplacien continu adaptée au cas de problèmes discret (graphes, par exemple). Il est notamment employé en analyse numérique, par exemple dans le cadre de la résolution de l'équation de la chaleur par la méthode des différences finies, ou en pour la détection de contours. Soit une fonction réelle de deux variables réelles et et . On définit le laplacien discret de comme la somme des dérivées secondes discrètes selon et selon , soit : L'exemple précédent est décrit dans une grille régulière cartésienne de dimension (plan).