Corps résiduelUn corps résiduel d'un anneau commutatif R est le quotient de R par un idéal maximal. S'agissant d'un idéal maximal, l'anneau issu du quotient a une structure de corps. Le concept est avant tout utilisé en géométrie algébrique et en théorie algébrique des nombres, où l'on travaille le plus souvent avec un anneau local ou un anneau de valuation discrète, qui ne possède qu'un idéal maximal et permet donc de parler « du » corps résiduel. On peut opérer le quotient sur un anneau non commutatif, mais on obtient alors un corps gauche.
Algorithme de Chanvignette|Exemple d'une enveloppe convexe d'un ensemble de n = 10 points. L'enveloppe contient k = 5 points. En géométrie algorithmique, l'algorithme de Chan nommé d'après son inventeur , est un algorithme sensible à la sortie qui calcule l'enveloppe convexe d'un ensemble de points, en dimension 2 ou 3. La complexité temporelle est où est le nombre de points dans l'enveloppe convexe. En dimension 2, l'algorithme combine un algorithme en (par exemple le parcours de Graham) et la marche de Jarvis afin d'obtenir un algorithme en .
Triangle de HéronIn geometry, a Heronian triangle (or Heron triangle) is a triangle whose side lengths a, b, and c and area A are all positive integers. Heronian triangles are named after Heron of Alexandria, based on their relation to Heron's formula which Heron demonstrated with the example triangle of sides 13, 14, 15 and area 84. Heron's formula implies that the Heronian triangles are exactly the positive integer solutions of the Diophantine equation that is, the side lengths and area of any Heronian triangle satisfy the equation, and any positive integer solution of the equation describes a Heronian triangle.
Vérité creuseEn mathématiques et en logique, une est un énoncé conditionnel ou universel qui est vrai parce que l'antécédent ne peut être satisfait. Par exemple, l'énoncé « tous les téléphones portables dans la pièce sont éteints » est vrai lorsqu'aucun téléphone portable ne se trouve dans la pièce. Dans ce cas, l'énoncé « tous les téléphones cellulaires dans la pièce sont allumés » est également vrai, tout comme la conjonction des deux : « tous les téléphones cellulaires dans la pièce sont allumés et éteints », qui serait autrement incohérente.