Perspective-Electrochemical Stability of Water-in-Salt Electrolytes
Publications associées (62)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Salts with asymmetric (fluorosulfonyl)(trifluoromethanesulfonyl)imide (FTFSI) anions have recently been shown to suppress crystallization of water-in-salt electrolytes, enabling low-temperature operation of high-voltage aqueous rechargeable batteries. To c ...
Water-in-salt electrolytes have enabled the development of novel high-voltage aqueous lithium-ion batteries. This study explores the reasons why analogous sodium electrolytes have struggled to reach the same level of electrochemical stability. Solution str ...
One of the main challenges for certain electricity production technologies (e.g. renewables) is the capability to supply energy according to the demand. It follows that storing energy is a possible solution to the inadequacy between production and demand. ...
Electrodeposition of stainless steel-like materials such as FeCrNi alloy into micro- and nanotemplates provides a sustainable framework for creating biomedical-oriented micro- and nanocomponents with outstanding characteristics. While Cr(III)-based electro ...
The “dual-circuit redox flow battery” takes advantage of a conventional all-vanadium redox flow battery (VRFB) combined with a separated catalytic hydrogen evolution reactor. Depending on demand, the VRFB can be conventionally discharged or supply H2 by us ...
Motivated to advance the renewable energy production and diversify the technologies for storable energy carriers, my work is concentrated on the characterization and the optimization of electrode morphologies applicable in photoelectrochemical water-splitt ...
Due to its high sensitivity to corrosion, the use of Si in direct photoelectrochemical (PEC) water-splitting systems that convert solar energy into chemical fuels has been greatly limited. Therefore, the development of low-cost materials resistant to corro ...
Lithium-ion batteries are widely implemented as energy storage devices due to their high energy density and low cost. They enabled modern portable electronics and electric ve-hicles, and are key to manage the integration of intermittent renewable electrici ...
The discovery of enhanced electrochemical stability for aqueous electrolytes with very high salt concentration has stimulated the development of high-voltage aqueous batteries. We show that a key factor limiting the applicability of these batteries is the ...
Through a combination of bulk, interface, and interphase effects, water-in-salt electrolytes, employing a high salt concentration, offer a wider electrochemical stability window than traditional dilute aqueous electrolytes. Here we explore chemical stabili ...