Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
This paper presents a novel deep architecture for weakly-supervised temporal action localization that not only generates segment-level action responses but also propagates segment-level responses to the neighborhood in a form of graph Laplacian regularization. Specifically, our approach consists of two sub-modules; a class activation module to estimate the action score map over time through the action classifiers, and a graph regularization module to refine the estimated action score map by solving a quadratic programming problem with the predicted segment-level semantic affinities. Since these two modules are integrated with fully differentiable layers, the proposed networks can be jointly trained in an end-to-end manner. Experimental results on Thumos14 and ActivityNet1.2 demonstrate that the proposed method provides outstanding performances in weakly-supervised temporal action localization.
David Atienza Alonso, Amir Aminifar, Renato Zanetti
, ,