Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We propose the Recursive Non-autoregressive Graph-to-graph Transformer architecture (RNG-Tr) for the iterative refinement of arbitrary graphs through the recursive application of a non-autoregressive Graph-to-Graph Transformer and apply it to syntactic dependency parsing. The Graph-to-Graph Transformer architecture of \newcite{mohammadshahi2019graphtograph} has previously been used for autoregressive graph prediction, but here we use it to predict all edges of the graph independently, conditioned on a previous prediction of the same graph. We demonstrate the power and effectiveness of RNG-Tr on several dependency corpora, using a refinement model pre-trained with BERT~\cite{devlin2018bert}. We also introduce Dependency BERT (DepBERT), a non-recursive parser similar to our refinement model. RNG-Tr is able to improve the accuracy of a variety of initial parsers on 13 languages from the Universal Dependencies Treebanks and the English and Chinese Penn Treebanks, even improving over the new state-of-the-art results achieved by DepBERT, significantly improving the state-of-the-art for all corpora tested.