Rayon de SchwarzschildEn physique et en astronomie, le rayon de Schwarzschild est le rayon de l'horizon d'un trou noir de Schwarzschild, lequel est un trou noir dont la charge électrique et le moment cinétique sont nuls. Cela signifie qu'en dessous de ce rayon tous les photons (circulant à la vitesse de la lumière) ont (en oubliant qu'on est dans un cadre relativiste) des trajectoires elliptiques et ne peuvent s'échapper. Par extension, c'est une longueur intervenant dans la description relativiste du champ gravitationnel créé par une distribution de masse à symétrie sphérique.
Rayon solaireEn astrophysique, le rayon solaire est l'unité de longueur conventionnellement utilisée pour exprimer la taille des étoiles. Elle est égale à la longueur du rayon du Soleil. Le rayon solaire approximatif est noté R, notation composée de la lettre latine capitale R pour le rayon suivie, à droite et en indice, de , symbole astronomique du Soleil. Les premières mesures précises du diamètre solaire furent effectuée au par le Français Jean Picard.
Trou noiralt=|vignette|Le disque d'accrétion du trou noir M87* imagé par l'en. Le trou noir lui-même est invisible, au centre de la zone noire centrale. En astrophysique, un trou noir est un objet céleste si compact que l'intensité de son champ gravitationnel empêche toute forme de matière ou de rayonnement de s'en échapper. De tels objets ne peuvent ni émettre, ni diffuser la lumière et sont donc noirs, ce qui en astronomie revient à dire qu'ils sont optiquement invisibles.
Nonlinear systemIn mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other scientists since most systems are inherently nonlinear in nature. Nonlinear dynamical systems, describing changes in variables over time, may appear chaotic, unpredictable, or counterintuitive, contrasting with much simpler linear systems.
Stabilité de LiapounovEn mathématiques et en automatique, la notion de stabilité de Liapounov (ou, plus correctement, de stabilité au sens de Liapounov) apparaît dans l'étude des systèmes dynamiques. De manière générale, la notion de stabilité joue également un rôle en mécanique, dans les modèles économiques, les algorithmes numériques, la mécanique quantique, la physique nucléaire Un exemple typique de système stable au sens de Liapounov est celui constitué d'une bille roulant sans frottement au fond d'une coupelle ayant la forme d'une demi-sphère creuse : après avoir été écartée de sa position d'équilibre (qui est le fond de la coupelle), la bille oscille autour de cette position, sans s'éloigner davantage : la composante tangentielle de la force de gravité ramène constamment la bille vers sa position d'équilibre.