Graphe chenillethumb|upright=1.2|Un graphe chenille. En théorie des graphes, un graphe chenille ou plus simplement une chenille est un arbre dans lequel tous les sommets sont à distance au plus 1 d'un chemin central. Les graphes chenilles ont d'abord été étudiés dans une série d'articles de Harary et Schwenk. Le nom a été suggéré par A. Hobbs. Harary & Schwenk écrivent de façon colorée : « une chenille est un arbre qui se métamorphose en un chemin lorsque son cocon de points d'extrémité est supprimé ».
Graphe planaire extérieurvignette|Un graphe planaire extérieur maximal, muni d'une 3-coloration. En mathématiques, et plus particulièrement en théorie des graphes, un graphe non orienté est planaire extérieur (ou, par calque de l'anglais, outer-planar) s'il peut être dessiné dans le plan sans croisements des arêtes, de telle façon que tous les sommets appartiennent à la face extérieure du tracé, autrement dit qu'aucun sommet ne soit entouré par des arêtes.
Causalitévignette|Exemple classique de la chute d'un domino causé par la chute d'un autre. En science, en philosophie et dans le langage courant, la causalité désigne la relation de cause à effet. la cause, corrélat de l'effet, c'est . C'est ce qui produit l'effet ; la causalité est le . Autrement dit, la causalité est l'influence par laquelle un événement, un processus, un état ou un objet (une cause) contribue à la production d'un autre événement, processus, état ou objet (un effet) considéré comme sa conséquence.
Réseau bayésienEn informatique et en statistique, un réseau bayésien est un modèle graphique probabiliste représentant un ensemble de variables aléatoires sous la forme d'un graphe orienté acyclique. Intuitivement, un réseau bayésien est à la fois : un modèle de représentation des connaissances ; une « machine à calculer » des probabilités conditionnelles une base pour des systèmes d'aide à la décision Pour un domaine donné (par exemple médical), on décrit les relations causales entre variables d'intérêt par un graphe.
Chordal bipartite graphIn the mathematical area of graph theory, a chordal bipartite graph is a bipartite graph B = (X,Y,E) in which every cycle of length at least 6 in B has a chord, i.e., an edge that connects two vertices that are a distance > 1 apart from each other in the cycle. A better name would be weakly chordal and bipartite since chordal bipartite graphs are in general not chordal as the induced cycle of length 4 shows. Chordal bipartite graphs have various characterizations in terms of perfect elimination orderings, hypergraphs and matrices.
Clique (théorie des graphes)thumb|Exemple de graphe possédant une 3-clique (en rouge) : les trois sommets de ce sous-graphe sont tous adjacents deux-à-deux. thumb|Exemple de « biclique » : le graphe biparti complet K3,3. Une clique d'un graphe non orienté est, en théorie des graphes, un sous-ensemble des sommets de ce graphe dont le sous-graphe induit est complet, c'est-à-dire que deux sommets quelconques de la clique sont toujours adjacents. Une clique maximum d'un graphe est une clique dont le cardinal est le plus grand (c'est-à-dire qu'elle possède le plus grand nombre de sommets).
Échantillonnage stratifiévignette|Vous prenez un échantillon aléatoire stratifié en divisant d'abord la population en groupes homogènes (semblables en eux-mêmes) (strates) qui sont distincts les uns des autres, c'est-à-dire. Le groupe 1 est différent du groupe 2. Ensuite, choisissez un EAS (échantillon aléatoire simple) distinct dans chaque strate et combinez ces EAS pour former l'échantillon complet. L'échantillonnage aléatoire stratifié est utilisé pour produire des échantillons non biaisés.
Strongly chordal graphIn the mathematical area of graph theory, an undirected graph G is strongly chordal if it is a chordal graph and every cycle of even length (≥ 6) in G has an odd chord, i.e., an edge that connects two vertices that are an odd distance (>1) apart from each other in the cycle. Strongly chordal graphs have a forbidden subgraph characterization as the graphs that do not contain an induced cycle of length greater than three or an n-sun (n ≥ 3) as an induced subgraph. An n-sun is a chordal graph with 2n vertices, partitioned into two subsets U = {u1, u2,.
Modèle causal de Neyman-RubinLe modèle causal de Neyman-Rubin (ou modèle à résultats potentiels, en anglais potential outcome model) est un cadre de pensée permettant d'identifier statistiquement l'effet causal d'une variable sur une autre. La première version du modèle a été proposée par Jerzy Neyman en 1923 dans son mémoire de maîtrise. Le modèle a ensuite été généralisé par Donald Rubin dans un article intitulé « ». Le nom du modèle a été donné par Paul Holland dans un article de 1986 intitulé « ». Expérience naturelle Méthode des
Convenience samplingConvenience sampling (also known as grab sampling, accidental sampling, or opportunity sampling) is a type of non-probability sampling that involves the sample being drawn from that part of the population that is close to hand. This type of sampling is most useful for pilot testing. Convenience sampling is not often recommended for research due to the possibility of sampling error and lack of representation of the population. But it can be handy depending on the situation. In some situations, convenience sampling is the only possible option.