Publication

On The Choice of Graph Neural Network Architectures

Résumé

Seminal works on graph neural networks have primarily targeted semi-supervised node classification problems with few observed labels and high-dimensional signals. With the development of graph networks, this setup has become a de facto benchmark for a significant body of research. Interestingly, several works have recently shown that in this particular setting, graph neural networks do not perform much better than predefined low-pass filters followed by a linear classifier. However, when learning from little data in a high-dimensional space, it is not surprising that simple and heavily regularized methods are near-optimal. In this paper, we show empirically that in settings with fewer features and more training data, more complex graph networks significantly outperform simple models, and propose a few insights towards the proper choice of graph network architectures. We finally outline the importance of using sufficiently diverse benchmarks (including lower dimensional signals as well) when designing and studying new types of graph neural networks.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.