Approaching Ontology Alignment through Representation Learning to Bridge the Semantic Gap in Engineering Applications
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Publications associées à Approaching Ontology Alignment through Representation Learning to Bridge the Semantic Gap in Engineering Applications | EPFL Graph Search
Epilepsy, a major neurological disease, requires careful diagnosis and treatment. However, the detection of epileptic seizures remains a significant challenge. Current clinical practice relies on expert analysis of EEG signals, a process that is time-consu ...
Buildings play a pivotal role in the ongoing worldwide energy transition, accounting for 30% of the global energy consumption. With traditional engineering solutions reaching their limits to tackle such large-scale problems, data-driven methods and Machine ...
In the rapidly evolving landscape of machine learning research, neural networks stand out with their ever-expanding number of parameters and reliance on increasingly large datasets. The financial cost and computational resources required for the training p ...
In this thesis we explore the applications of projective geometry, a mathematical theory of the relation between 3D scenes and their 2D images, in modern learning-based computer vision systems. This is an interesting research question which contradicts the ...
Over the course of history, the relationship between cities and their waters has shown different gradients of interweaving, marked by cycles of bonding and distancing. Following a period of complete neglect of urban watercourses, the versatile, multifacete ...
In this thesis, we study two closely related directions: robustness and generalization in modern deep learning. Deep learning models based on empirical risk minimization are known to be often non-robust to small, worst-case perturbations known as adversari ...
Monitoring forests, in particular their response to climate and land use change, requires studying long time scales. While efficient deep learning methods have been developed to process short time series of satellite imagery, leveraging long time series of ...
Mitigating the energy requirements of artificial intelligence requires novel physical substrates for computation. Phononic metamaterials have vanishingly low power dissipation and hence are a prime candidate for green, always-on computers. However, their u ...
Supervised machine learning models are receiving increasing attention in electricity theft detection due to their high detection accuracy. However, their performance depends on a massive amount of labeled training data, which comes from time-consuming and ...
Traditional example-based learning methods are often limited by static, expert-created content. Hence, they face challenges in scalability, engagement, and effectiveness, as some learners might struggle to relate to the examples or find them relevant. To a ...