Approaching Ontology Alignment through Representation Learning to Bridge the Semantic Gap in Engineering Applications
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This research, within the framework of computational archives, inspects a novel approach to representing intangible knowledge in traditional martial arts. The methodology presents a unity of ontological modeling, semantic annotation, and feature-based mach ...
Zentrum für Informationsmodellierung - Austrian Centre for Digital Humanities, University of Graz2023
We establish new results on the weak containment of quasi-regular and Koopman representations of a second countable locally compact group GG associated with nonsingular GG-spaces. We deduce that any two boundary representations of a hyperbolic locally ...
Intelligence involves processing sensory experiences into representations useful for prediction. Understanding sensory experiences and building these contextual representations without prior knowledge of sensor models and environment is a challenging unsup ...
Machine learning has become the state of the art for the solution of the diverse inverse problems arising from computer vision and medical imaging, e.g. denoising, super-resolution, de-blurring, reconstruction from scanner data, quantitative magnetic reson ...
Structured and grounded representation of text is typically formalized by closed information extraction, the problem of extracting an exhaustive set of (subject, relation, object) triplets that are consistent with a predefined set of entities and relations ...
Named entity linking (NEL) in news is a challenging endeavour due to the frequency of unseen and emerging entities, which necessitates the use of unsupervised or zero-shot methods. However, such methods tend to come with caveats, such as no integration of ...
In several machine learning settings, the data of interest are well described by graphs. Examples include data pertaining to transportation networks or social networks. Further, biological data, such as proteins or molecules, lend themselves well to graph- ...
Term extraction is an information extraction task at the root of knowledge discovery platforms. Developing term extractors that are able to generalize across very diverse and potentially highly technical domains is challenging, as annotations for domains r ...
Recent breakthroughs in deep learning often rely on representation learning and knowledge transfer. In recent years, unsupervised and self-supervised techniques for learning speech representation were developed to foster automatic speech recognition. Up to ...
EUROPEAN ASSOC SIGNAL SPEECH & IMAGE PROCESSING-EURASIP2021
Data-driven and model-driven methodologies can be regarded as competitive fields since they tackle similar problems such as prediction. However, these two fields can learn from each other to improve themselves. Indeed, data-driven methodologies have been d ...