Publication

Intent Prediction Based on Biomechanical Coordination of EMG and Vision-Filtered Gaze for End-Point Control of an Arm Prosthesis

Résumé

We propose a novel controller for powered prosthetic arms, where fused EMG and gaze data predict the desired end-point for a full arm prosthesis, which could drive the forward motion of individual joints. We recorded EMG, gaze, and motion-tracking during pick-and-place trials with 7 able-bodied subjects. Subjects positioned an object above a random target on a virtual interface, each completing around 600 trials. On average across all trials and subjects gaze preceded EMG and followed a repeatable pattern that allowed for prediction.A computer vision algorithm was used to extract the initial and target fixations and estimate the target position in 2D space. Two SVRs were trained with EMG data to predict the x- and y- position of the hand; results showed that the y-estimate was significantly better than the x-estimate. The EMG and gaze predictions were fused using a Kalman Filter-based approach, and the positional error from using EMG-only was significantly higher than the fusion of EMG and gaze. The final target position Root Mean Squared Error (RMSE) decreased from 9.28 cm with an EMG-only prediction to 6.94 cm when using a gaze-EMG fusion. This error also increased significantly when removing some or all arm muscle signals. However, using fused EMG and gaze, there were no significant difference between predictors that included all muscles, or only a subset of muscles.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.