Mémoire adressable par contenuUne mémoire adressable par le contenu (CAM, en anglais Content-Addressable Memory) est un type de mémoire informatique spécial, utilisé dans certaines applications pour la recherche à très haute vitesse. Elle est aussi connue sous le nom de mémoire associative (associative memory, associative storage, ou associative array). Contrairement aux mémoires informatiques standards (random access memory ou RAM) pour lesquelles l'application utilisatrice fournit une adresse mémoire et la RAM renvoie la donnée stockée à cette adresse, une CAM est conçue de manière que l'application utilisatrice fournisse un mot de donnée et la CAM recherche dans toute la mémoire pour voir si ce mot y est stocké.
Parallélisme (informatique)vignette|upright=1|Un des éléments de Blue Gene L cabinet, un des supercalculateurs massivement parallèles les plus rapides des années 2000. En informatique, le parallélisme consiste à mettre en œuvre des architectures d'électronique numérique permettant de traiter des informations de manière simultanée, ainsi que les algorithmes spécialisés pour celles-ci. Ces techniques ont pour but de réaliser le plus grand nombre d'opérations en un temps le plus petit possible.
Batch normalizationBatch normalization (also known as batch norm) is a method used to make training of artificial neural networks faster and more stable through normalization of the layers' inputs by re-centering and re-scaling. It was proposed by Sergey Ioffe and Christian Szegedy in 2015. While the effect of batch normalization is evident, the reasons behind its effectiveness remain under discussion. It was believed that it can mitigate the problem of internal covariate shift, where parameter initialization and changes in the distribution of the inputs of each layer affect the learning rate of the network.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
MemristorEn électronique, le memristor (ou memristance) est un composant électronique passif. Il a été décrit comme le quatrième composant passif élémentaire, aux côtés du condensateur (ou capacité), du résistor (ou résistance) et de la bobine(ou inductance). Le nom est un mot-valise formé à partir des deux mots anglais memory et resistor. Un memristor stocke efficacement l’information car la valeur de sa résistance électrique change de façon permanente lorsqu’un courant est appliqué.
Mémoire mortethumb|Une PROM (1983) Originellement, l'expression mémoire morte (en anglais, Read-Only Memory : ROM) désignait une mémoire informatique non volatile dont le contenu est fixé lors de sa programmation, qui pouvait être lue plusieurs fois par l'utilisateur, mais ne pouvait plus être modifiée. Avec l'évolution des technologies, la définition du terme mémoire morte (en français) ou read only memory (en anglais) a été élargie pour inclure les mémoires non volatiles dont le contenu est fixé lors de leur fabrication, qui peuvent être lues plusieurs fois par l'utilisateur et qui ne sont pas prévues pour être modifiées.
Encoding (memory)Memory has the ability to encode, store and recall information. Memories give an organism the capability to learn and adapt from previous experiences as well as build relationships. Encoding allows a perceived item of use or interest to be converted into a construct that can be stored within the brain and recalled later from long-term memory. Working memory stores information for immediate use or manipulation, which is aided through hooking onto previously archived items already present in the long-term memory of an individual.
Réseaux antagonistes génératifsEn intelligence artificielle, les réseaux antagonistes génératifs (RAG) parfois aussi appelés réseaux adverses génératifs (en anglais generative adversarial networks ou GANs) sont une classe d'algorithmes d'apprentissage non supervisé. Ces algorithmes ont été introduits par . Ils permettent de générer des images avec un fort degré de réalisme. Un GAN est un modèle génératif où deux réseaux sont placés en compétition dans un scénario de théorie des jeux. Le premier réseau est le générateur, il génère un échantillon (ex.
Recherche automatique d'architecture neuronaleLa recherche automatique d'architecture neuronale (Neural Architecture Search, NAS) est un ensemble de techniques visant à découvrir automatiquement de nouveaux modèles de réseaux de neurones artificiels. Les principales méthodes employées dans la littérature sont basées soit sur de l'apprentissage par renforcement, sur de la descente de gradient ou bien sur des algorithmes génétiques. Plusieurs méthodes NAS parviennent à obtenir des architectures qui atteignent ou surpassent les performances des modèles créés à la main.
General-purpose processing on graphics processing unitsGPGPU est l'abréviation de general-purpose computing on graphics processing units, c'est-à-dire calcul générique sur processeur graphique. L'objectif de tels calculs est de bénéficier de la capacité de traitement parallèle des processeurs graphiques. Avant l'arrivée des GPGPU, le CPU, processeur central de l'ordinateur, traitait la plupart des opérations lourdes en calcul comme les simulations physiques, le rendu hors-ligne pour les films, les calculs de risques pour les institutions financières, la prévision météorologique, l'encodage de fichier vidéo et son Intel avec ses 80 % de parts de marché sur les CPU dominait donc très largement tous les besoins en calcul et pouvait en extraire de substantielles marges.