NSM Converges to a k-NN Regressor Under Loose Lipschitz Estimates
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Locality-Sensitive Hashing (LSH) approximates nearest neighbors in high dimensions by projecting original data into low-dimensional subspaces. The basic idea is to hash data samples to ensure that the probability of collision is much higher for samples tha ...
This paper addresses the problem of representing multimedia information under a compressed form that permits efficient classification. The semantic coding problem starts from a subspace method where dimensionality reduction is formulated as a matrix factor ...
In a society which produces and consumes an ever increasing amount of information, methods which can make sense out of all this data become of crucial importance. Machine learning tries to develop models which can make the information load accessible. Thre ...
In a society which produces and consumes an ever increasing amount of information, methods which can make sense out of al1 this data become of crucial importance. Machine learning tries to develop models which can make the information load accessible. Thre ...
In a society which produces and consumes an ever increasing amount of information, methods which can make sense out of all this data become of crucial importance. Machine learning tries to develop models which can make the information load accessible. Thre ...
École Polytechnique Fédérale de Lausanne, Computer Science Department2000
The central problem in the case of face detectors is to build a face class model. We present a method for face class modeling in the eigenfaces space using a large-margin classifier like SVM. Two main issues are addressed: what is the required number of ei ...
In this paper, we focus on the use of random projections as a dimensionality reduction tool for sampled manifolds in high-dimensional Euclidean spaces. We show that geodesic paths approximations from nearest neighbors Euclidean distances are well-preserved ...
A sliding-window k-NN query (k-NN/w query) continuously monitors incoming data stream objects within a sliding window to identify k closest objects to a query. It enables effective filtering of data objects streaming in at high rates from potentially distr ...
This paper addresses the problem of 3D face recognition using simultaneous sparse approximations on the sphere. The 3D face point clouds are first aligned with a novel and fully automated registration process. They are then represented as signals on the 2D ...