Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Auto-encodeurUn auto-encodeur (autoencodeur), ou auto-associateur est un réseau de neurones artificiels utilisé pour l'apprentissage non supervisé de caractéristiques discriminantes. L'objectif d'un auto-encodeur est d'apprendre une représentation (encodage) d'un ensemble de données, généralement dans le but de réduire la dimension de cet ensemble. Récemment, le concept d'auto-encodeur est devenu plus largement utilisé pour l'apprentissage de modèles génératifs.
Segmentation (marketing)vignette|Celle ci parle du tranche d'âge des enfants qui pourront fréquenter les différentes market qui existent La segmentation d'un marché consiste à le découper analytiquement en sous-marchés homogènes. Cette analyse se pratique en particulier mais pas uniquement dans le domaine du marketing. La segmentation dite « de ciblage », ou de détermination des couples produit-marché, vise à qualifier et à quantifier la relation qui peut exister entre le produit et son marché.
Recherche automatique d'architecture neuronaleLa recherche automatique d'architecture neuronale (Neural Architecture Search, NAS) est un ensemble de techniques visant à découvrir automatiquement de nouveaux modèles de réseaux de neurones artificiels. Les principales méthodes employées dans la littérature sont basées soit sur de l'apprentissage par renforcement, sur de la descente de gradient ou bien sur des algorithmes génétiques. Plusieurs méthodes NAS parviennent à obtenir des architectures qui atteignent ou surpassent les performances des modèles créés à la main.
Graph cuts in computer visionAs applied in the field of computer vision, graph cut optimization can be employed to efficiently solve a wide variety of low-level computer vision problems (early vision), such as , the stereo correspondence problem, , object co-segmentation, and many other computer vision problems that can be formulated in terms of energy minimization. Many of these energy minimization problems can be approximated by solving a maximum flow problem in a graph (and thus, by the max-flow min-cut theorem, define a minimal cut of the graph).
Modèle discriminatifDiscriminative models, also referred to as conditional models, are a class of logistical models used for classification or regression. They distinguish decision boundaries through observed data, such as pass/fail, win/lose, alive/dead or healthy/sick. Typical discriminative models include logistic regression (LR), conditional random fields (CRFs) (specified over an undirected graph), decision trees, and many others. Typical generative model approaches include naive Bayes classifiers, Gaussian mixture models, variational autoencoders, generative adversarial networks and others.
Détection d'objetthumb|Détection de visage avec la méthode de Viola et Jones. En vision par ordinateur on désigne par détection d'objet (ou classification d'objet) une méthode permettant de détecter la présence d'une instance (reconnaissance d'objet) ou d'une classe d'objets dans une . Une attention particulière est portée à la détection de visage et la détection de personne. Ces méthodes font souvent appel à l'apprentissage supervisé et ont des applications dans de multiples domaines, tels la ou la vidéo surveillance.
Dronevignette|Un Parrot AR.Drone devant un Dassault Rafale. vignette|Un drone de reconnaissance EADS Harfang lors du Salon du Bourget de 2007. vignette|Drone civil OnyxStar Fox-C8 XT en vol. vignette|Drone de combat russe lourd Soukhoï S-70 Okhotnik-B Les drones (//, du mot anglais signifiant « faux bourdon ») désignent des engins commandés à distance, dont le pilotage est automatique ou télécommandé, qu''ils soient volants, terrestres ou encore amphibies , à usage civil ou au profit des forces armées ou de sécurité d'un État.
Medical image computingMedical image computing (MIC) is an interdisciplinary field at the intersection of computer science, information engineering, electrical engineering, physics, mathematics and medicine. This field develops computational and mathematical methods for solving problems pertaining to medical images and their use for biomedical research and clinical care. The main goal of MIC is to extract clinically relevant information or knowledge from medical images.
Modèle génératifvignette|Schéma représentant la différence entre un modèle discriminatif et un modèle génératif. En classement automatique un modèle génératif est un modèle statistique défini par opposition à un modèle discriminatif. Étant donné une variable X à laquelle il doit associer une autre variable Y, le modèle génératif cherchera à décrire la probabilité conditionnelle ainsi que la probabilité puis d'utiliser la formule de Bayes pour calculer la probabilité .