Neural-Network Optimized 1-bit Precoding for Massive MU-MIMO
Publications associées (46)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Distributed compressed sensing is the extension of compressed sampling (CS) to sensor networks. The idea is to design a CS joint decoding scheme at a central decoder (base station) that exploits the inter-sensor correlations, in order to recover the whole ...
memory in biological neural networks. Similarly, artificial neural networks could benefit from modulatory dynamics when facing certain types of learning problem. Here we test this hypothesis by introducing modulatory neurons to enhance or dampen neural pla ...
Beamforming (BF) improves the error rate performance of multiple-input multiple-output (MIMO) wireless communication systems by spatial separation of the transmitted data streams. Spatial separation is achieved by multiplication of the transmit vector by a ...
Motivated by biological neural networks and distributed sensing networks, we study how pooling networks – or quantizers – with random thresholds can be used in detection tasks. We provide a brief overview of the use of deterministic quantizers in detection ...
Diversity-embedded codes for fading channels are high-rate codes that are designed so that they have a high-diversity code embedded within them \cite{DIMACS,Embed:Globecom}. This is equivalent to coding the data into two streams such that the high-priority ...