Force de CoriolisLa force de Coriolis est une force inertielle agissant perpendiculairement à la direction du mouvement d'un corps en déplacement dans un milieu (un référentiel) lui-même en rotation uniforme, tel que vu par un observateur partageant le même référentiel. Cette « force » est nommée ainsi en l'honneur de l'ingénieur français Gaspard-Gustave Coriolis. Elle n'est pas une « force » au sens strict, soit l'action d'un corps sur un autre, mais plutôt une force fictive résultant du mouvement non linéaire du référentiel lui-même.
Force centrifugeLa force centrifuge, nom courant de l'effet centrifuge, est une force parfois qualifiée de fictive qui apparaît en physique dans le contexte de l'étude du mouvement des objets dans des référentiels non inertiels. L'effet ressenti, modélisé par cette force, est dû à l'inertie des corps face aux mouvements de rotation de ces référentiels et se traduit par une tendance à éloigner les corps de leur centre de rotation. Un exemple en est la sensation d'éjection que ressent un voyageur dans un véhicule qui effectue un virage.
Force d'inertieUne force d'inertie, ou inertielle, ou force fictive, ou pseudo-force est une force apparente qui agit sur les masses lorsqu'elles sont observées à partir d'un référentiel non inertiel, autrement dit depuis un point de vue en mouvement accéléré (en translation ou en rotation). La force d'inertie est donc une résistance opposée au mouvement par un corps, grâce à sa masse. L'équation fondamentale de la dynamique, dans la formulation initiale donnée par Newton, est valable uniquement dans des référentiels inertiels (dits aussi galiléens).
Méthode des moindres carrésLa méthode des moindres carrés, indépendamment élaborée par Legendre et Gauss au début du , permet de comparer des données expérimentales, généralement entachées d’erreurs de mesure, à un modèle mathématique censé décrire ces données. Ce modèle peut prendre diverses formes. Il peut s’agir de lois de conservation que les quantités mesurées doivent respecter. La méthode des moindres carrés permet alors de minimiser l’impact des erreurs expérimentales en « ajoutant de l’information » dans le processus de mesure.
Référentiel en rotationUn référentiel en rotation est un cas particulier de référentiel non inertiel qui est en rotation par rapport à un référentiel inertiel. Un exemple courant d'un système de référence en rotation est la surface de la Terre. Ce référentiel permet de mesurer la vitesse et le sens de rotation en mesurant les forces fictives. Par exemple, Léon Foucault a pu démontrer la force de Coriolis résultant de la rotation de la Terre avec le pendule de Foucault. Cette animation montre le système de référence en rotation.
Référentiel non inertielUn référentiel non inertiel, ou non galiléen, est un référentiel qui ne vérifie pas les conditions nécessaires pour être inertiel (galiléen). Les deux premières lois du mouvement de Newton n'y sont vérifiées qu'en invoquant des forces supplémentaires appelées forces d'inertie, souvent qualifiées de « fictives », qui sont dues au mouvement accéléré du référentiel par rapport à un référentiel inertiel. Dans un référentiel inertiel, un corps ponctuel libre de toute influence a un mouvement inertiel qui suit un mouvement rectiligne uniforme.
Linear least squaresLinear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals. Numerical methods for linear least squares include inverting the matrix of the normal equations and orthogonal decomposition methods. The three main linear least squares formulations are: Ordinary least squares (OLS) is the most common estimator.
Méthode des moindres carrés ordinairevignette|Graphique d'une régression linéaire La méthode des moindres carrés ordinaire (MCO) est le nom technique de la régression mathématique en statistiques, et plus particulièrement de la régression linéaire. Il s'agit d'un modèle couramment utilisé en économétrie. Il s'agit d'ajuster un nuage de points selon une relation linéaire, prenant la forme de la relation matricielle , où est un terme d'erreur.
Moindres carrés non linéairesLes moindres carrés non linéaires est une forme des moindres carrés adaptée pour l'estimation d'un modèle non linéaire en n paramètres à partir de m observations (m > n). Une façon d'estimer ce genre de problème est de considérer des itérations successives se basant sur une version linéarisée du modèle initial. Méthode des moindres carrés Considérons un jeu de m couples d'observations, (x, y), (x, y),...,(x, y), et une fonction de régression du type y = f (x, β).
Euler forceIn classical mechanics, the Euler force is the fictitious tangential force that appears when a non-uniformly rotating reference frame is used for analysis of motion and there is variation in the angular velocity of the reference frame's axes. The Euler acceleration (named for Leonhard Euler), also known as azimuthal acceleration or transverse acceleration is that part of the absolute acceleration that is caused by the variation in the angular velocity of the reference frame. The Euler force will be felt by a person riding a merry-go-round.