**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Numerical methods for deterministic and stochastic differential equations with multiple scales and high contrasts

Résumé

Mathematical models involving multiple scales are essential for the description of physical systems. In particular, these models are important for the simulation of time-dependent phenomena, such as the heat flow, where the Laplacian contains mixed and indistinguishable fast and slow modes. Stationary problems can also exhibit a multiscale nature. For example, elliptic equations governed by a diffusion coefficient with strong discontinuities have solutions characterized by regions with a high gradient. Simulating such models is very demanding, as the computational cost of standard numerical methods is usually ruled by the fastest dynamics or the smallest scale.

In the first part of this thesis, we develop multirate integration methods for deterministic and stochastic time-dependent problems with disparate time-scales. The cost of traditional schemes for such problems is prohibitive due to step size restrictions in the explicit case or solutions to large nonlinear systems in the implicit case. Existing multirate methods are either implicit or make use of interpolations, which trigger instabilities, or are based on a scale separation assumption, which is not satisfied by parabolic problems. Here we introduce a new framework based on modified equations which allows for the development of a whole new class of interpolation-free explicit multirate numerical methods, which do not need any scale separation, are stable and accurate. For deterministic problems, our methodology is based on the replacement of the original right-hand side by an averaged force, whose stiffness is reduced due to a fast but cheap auxiliary problem. Integrating the modified equation and the auxiliary problems by explicit schemes is generally cheaper than integrating the original problem. We thus introduce a multirate method based on stabilized explicit schemes and prove its efficiency, stability and accuracy. Numerical experiments show that standard schemes and our multirate approach provide essentially the same solutions; hence, the bottleneck caused by the stiffness of a few degrees of freedom is overcome without sacrificing accuracy. We also generalize the same framework to stochastic differential equations, where we need to introduce a damped diffusion term for which the resulting modified equation inherits the mean-square stability properties of the original problem. An interpolation-free stabilized explicit multirate method for stochastic equations is then derived.

In the second part of this thesis, we consider elliptic problems with high gradients and develop a local adaptive discontinuous Galerkin scheme. Local methods for such problems already exist in literature; however, they are usually based on iterations and have several downsides. In particular, their a priori error analysis is based on rather strong and nonphysical assumptions and they lack a rigorous a posteriori error analysis. The scheme that we propose is based on a coarse solution on the full domain which is subsequently improved by solving local elliptic problems only once on subdomains with artificial boundary conditions. The a priori error analysis is performed under minimal regularity assumptions due to the gradient discretization framework. Furthermore, we derive a posteriori error estimators based on conforming fluxes and potential reconstructions which can be used to identify the local subdomains on the fly, are free of undetermined constants and robust in singularly perturbed regimes.

Source officielle

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés (36)

Publications associées (123)

MOOCs associés (32)

Numerical methods for partial differential equations

Numerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values.

Équation différentielle stochastique

Une équation différentielle stochastique (EDS) est une généralisation de la notion d'équation différentielle prenant en compte un terme de bruit blanc. Les EDS permettent de modéliser des trajectoires aléatoires, tels des cours de bourse ou les mouvements de particules soumises à des phénomènes de diffusion. Elles permettent aussi de traiter théoriquement ou numériquement des problèmes issus de la théorie des équations aux dérivées partielles.

Numerical methods for ordinary differential equations

Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.

Warm-up for EPFL

Warmup EPFL est destiné aux nouvelles étudiantes et étudiants de l'EPFL.

Algèbre Linéaire (Partie 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algèbre Linéaire (Partie 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Stefano Alberti, Jean-Philippe Hogge, Joaquim Loizu Cisquella, Jérémy Genoud, Francesco Romano

This paper presents the new 2D electrostatic particle-in-cell code FENNECS de- veloped to study the formation of magnetized non-neutral plasmas in geometries with azimuthal symmetry. This code has been developed in the domain of gy- rotron electron gun des ...

2024Annalisa Buffa, Espen Sande, Yannis Dirk Voet

Mass lumping techniques are commonly employed in explicit time integration schemes for problems in structural dynamics and both avoid solving costly linear systems with the consistent mass matrix and increase the critical time step. In isogeometric analysi ...

2024Daniel Kressner, Axel Elie Joseph Séguin, Gianluca Ceruti

In algorithms for solving optimization problems constrained to a smooth manifold, retractions are a well-established tool to ensure that the iterates stay on the manifold. More recently, it has been demonstrated that retractions are a useful concept for ot ...