Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Various bias-correction methods such as EXTRA, DIGing, and exact diffusion have been proposed recently to solve distributed deterministic optimization problems. These methods employ constant step-sizes and converge linearly to the exact solution under proper conditions. However, their performance under stochastic and adaptive settings remains unclear. It is still unknown whether bias-correction is beneficial in stochastic settings. By studying exact diffusion and examining its steady-state performance under stochastic scenarios, this paper provides affirmative results. It is shown that the correction step in exact diffusion can lead to better steady-state performance than traditional methods.
Ali H. Sayed, Bicheng Ying, Kun Yuan
Ali H. Sayed, Bicheng Ying, Kun Yuan, Sulaiman A S A E Alghunaim
Emanuele Mingione, Diego Alberici