Publication

Accelerated MP2RAGE imaging using Cartesian phyllotaxis readout and compressed sensing reconstruction

Résumé

Purpose MP2RAGE T-1-weighted imaging has been shown to be beneficial for various applications, mainly because of its good grey-white matter contrast, its B-1-robustness and ability to derive T(1)maps. Even using parallel imaging, the method requires long acquisition times, especially at high resolution. This work aims at accelerating MP2RAGE imaging using compressed sensing. Methods A pseudo-phyllotactic Cartesian MP2RAGE readout was implemented allowing for flexible reordering and undersampling factors. The sampling pattern was first optimized based on fully sampled data and a compressed sensing reconstruction. Changes in contrast ratios, automated brain segmentation results, and quantitative T(1)values were used for benchmarking. In vivo undersampled data from eleven healthy subjects were then acquired using a 4-fold acceleration with the optimized sampling pattern. The resulting images were compared to the standard parallel imaging MP2RAGE protocol by visual inspection and using the above quality metrics. Results The application of incoherent undersampling and iterative compressed sensing reconstruction on MP2RAGE acquisitions allows for a 57% time reduction (corresponding to 4-fold undersampling with maintained reference lines, TA = 3:35 minutes) compared to the reference protocol using parallel imaging (GRAPPAx3 acceleration, TA = 8:22 minutes) while obtaining images with similar image quality, morphometric (volume differences = [0.07 +/- 1.2-3.8 +/- 1.9]%) and T-1-mapping outcomes (T(1)error = [6 +/- 5.1-37 +/- 12.3] ms depending on the different structures). Conclusion A whole-brain MP2RAGE acquisition is feasible with compressed sensing in less than 4 minutes without appreciably compromising image quality.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.