Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
There is an urge to develop new hole-transporting materials (HTMs) for perovskite solar cells (PSCs), which can yield comparable power conversion efficiencies (PCEs) yet mitigate the issue of stability associated with the state-of-the-art HTM Spiro-MeOTAD. Herein, we designed and prepared C-2v-symmetric spiro-configured HTM-1 comprising a central acridine-cyclopentadithiophene core unit flanked with triarylamine moieties. PSCs containing a 40 nm thin HTM-1 layer for hole extraction yielded a stabilized PCE approaching 21% under standard illumination. Owing to its higher hole mobility (mu(h)) at low electric field, an impressive short-circuit current density (J(SC)) of 24.7 mA cm(-2) and a high fill factor (FF) of 0.77 have been achieved. More importantly, HTM-1-based PSCs presented an excellent long-term operational stability under continuous illumination for 400 h and thermal stability at 80 degrees C, which can be ascribed to its high glass transition temperature of 168 degrees C and superior moisture tolerance. Arguably, the confluence of high performance and remarkable stability will lead to the development of technologically interesting new, stable, and efficient PSCs.
Hong Zhang, Zhiwen Zhou, Miao Chen
Mohammad Khaja Nazeeruddin, Jianxing Xia, Ruiyuan Hu