Automated machine learningAutomated machine learning (AutoML) is the process of automating the tasks of applying machine learning to real-world problems. AutoML potentially includes every stage from beginning with a raw dataset to building a machine learning model ready for deployment. AutoML was proposed as an artificial intelligence-based solution to the growing challenge of applying machine learning. The high degree of automation in AutoML aims to allow non-experts to make use of machine learning models and techniques without requiring them to become experts in machine learning.
Raisonnement automatisévignette|Visualisation commune du réseau de neurones artificiels avec puce NOTOC Le raisonnement automatisé est un domaine de l'informatique consacré à la compréhension des différents aspects du raisonnement de manière à permettre la création de logiciels qui permettraient aux ordinateurs de « raisonner » de manière automatique, ou presque. Il est considéré habituellement comme un sous-domaine de l'intelligence artificielle, mais possède aussi de fortes connexions avec l'Informatique théorique et même avec la philosophie.
Regression validationIn statistics, regression validation is the process of deciding whether the numerical results quantifying hypothesized relationships between variables, obtained from regression analysis, are acceptable as descriptions of the data. The validation process can involve analyzing the goodness of fit of the regression, analyzing whether the regression residuals are random, and checking whether the model's predictive performance deteriorates substantially when applied to data that were not used in model estimation.
FuturologieLa futurologie est un domaine interdisciplinaire qui agrège des données classées par des méthodes tant empiriques que logiques, en vue d'analyser des tendances et d'esquisser des scénarios plausibles de l’avenir. Elle examine les sources, les desseins et causes de changement et de stabilité pour formuler des prédictions. La futurologie est censée procéder à partir des données technologiques, économiques ou sociales du passé et du présent, et affirme se fonder sur des techniques (simulation, statistique) et des modèles scientifiques (science des systèmes, écologie).
Machine à vecteurs de supportLes machines à vecteurs de support ou séparateurs à vaste marge (en anglais support-vector machine, SVM) sont un ensemble de techniques d'apprentissage supervisé destinées à résoudre des problèmes de discrimination et de régression. Les SVM sont une généralisation des classifieurs linéaires. Les séparateurs à vaste marge ont été développés dans les années 1990 à partir des considérations théoriques de Vladimir Vapnik sur le développement d'une théorie statistique de l'apprentissage : la théorie de Vapnik-Tchervonenkis.
Jeux d'entrainement, de validation et de testEn apprentissage automatique, une tâche courante est l'étude et la construction d'algorithmes qui peuvent apprendre et faire des prédictions sur les données. De tels algorithmes fonctionnent en faisant des prédictions ou des décisions basées sur les données, en construisant un modèle mathématique à partir des données d'entrée. Ces données d'entrée utilisées pour construire le modèle sont généralement divisées en plusieurs jeux de données .
Rule-based machine learningRule-based machine learning (RBML) is a term in computer science intended to encompass any machine learning method that identifies, learns, or evolves 'rules' to store, manipulate or apply. The defining characteristic of a rule-based machine learner is the identification and utilization of a set of relational rules that collectively represent the knowledge captured by the system. This is in contrast to other machine learners that commonly identify a singular model that can be universally applied to any instance in order to make a prediction.
Réponse impulsionnellevignette|300px|right|Réponses impulsionnelles d'un système audio simple (de haut en bas) : impulsion originale à l'entrée, réponse après amplification des hautes fréquences et réponse après amplification des basses fréquences. En traitement du signal, la réponse impulsionnelle d'un processus est le signal de sortie qui est obtenu lorsque l'entrée reçoit une impulsion, c'est-à-dire une variation soudaine et brève du signal.
Meta-learning (computer science)Meta learning is a subfield of machine learning where automatic learning algorithms are applied to metadata about machine learning experiments. As of 2017, the term had not found a standard interpretation, however the main goal is to use such metadata to understand how automatic learning can become flexible in solving learning problems, hence to improve the performance of existing learning algorithms or to learn (induce) the learning algorithm itself, hence the alternative term learning to learn.
Pays en développementDans la typologie la plus courante, les pays en développement ou pays du Sud sont des pays moins développés économiquement que les pays développés (parfois appelés pays du Nord). L'expression « pays en développement » remplace des dénominations antérieures, jugées inadéquates, obsolètes ou incorrectes : les pays du tiers monde, les pays sous-développés. Elle s'est substituée à « pays en voie de développement ».