Publication

Machine Learning at the Atomic Scale

Résumé

Statistical learning algorithms are finding more and more applications in science and technology. Atomic-scale modeling is no exception, with machine learning becoming commonplace as a tool to predict energy, forces and properties of molecules and condensed-phase systems. This short review summarizes recent progress in the field, focusing in particular on the problem of representing an atomic configuration in a mathematically robust and computationally efficient way. We also discuss some of the regression algorithms that have been used to construct surrogate models of atomic-scale properties. We then show examples of how the optimization of the machine-learning models can both incorporate and reveal insights onto the physical phenomena that underlie structure–property relations.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (32)
Apprentissage automatique
L'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Algorithme d'apprentissage incrémental
En informatique, un algorithme d'apprentissage incrémental ou incrémentiel est un algorithme d'apprentissage qui a la particularité d'être online, c'est-à-dire qui apprend à partir de données reçues au fur et à mesure du temps. À chaque incrément il reçoit des données d'entrées et un résultat, l'algorithme calcule alors une amélioration du calcul fait pour prédire le résultat à partir des données d'entrées.
Physique atomique
La physique atomique est le champ de la physique qui étudie les atomes en tant que systèmes isolés qui comprennent les électrons et le noyau atomique. Elle se concentre essentiellement sur l'arrangement des électrons autour du noyau et sur la façon dont celui-ci est modifié. Cette définition englobe tant les ions que les atomes électriquement neutres. Puisque « atomique » et « nucléaire » sont utilisés de façon synonyme dans le langage courant, la physique atomique est souvent confondue avec la physique nucléaire.
Afficher plus
Publications associées (42)

Machine learning models for prediction of electrochemical properties in supercapacitor electrodes using MXene and graphene nanoplatelets

Mohammad Khaja Nazeeruddin

Herein, machine learning (ML) models using multiple linear regression (MLR), support vector regression (SVR), random forest (RF) and artificial neural network (ANN) are developed and compared to predict the output features viz. specific capacitance (Csp), ...
Lausanne2024

Random matrix methods for high-dimensional machine learning models

Antoine Philippe Michel Bodin

In the rapidly evolving landscape of machine learning research, neural networks stand out with their ever-expanding number of parameters and reliance on increasingly large datasets. The financial cost and computational resources required for the training p ...
EPFL2024

Uncertainty quantification in machine learning for engineering design and health prognostics: A tutorial

Olga Fink, Luca Biggio

On top of machine learning (ML) models, uncertainty quantification (UQ) functions as an essential layer of safety assurance that could lead to more principled decision making by enabling sound risk assessment and management. The safety and reliability impr ...
2023
Afficher plus
MOOCs associés (2)
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.