Bio-inspired design and validation of the Efficient Lockable Spring Ankle (ELSA) prosthesis
Publications associées (33)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Locomotion is based on a sophisticated interaction among the environment, the musculoskeletal system, the spinal cord, and the brain locomotor areas. Quality of life is strongly related to the proper capability of this movement. However, many pathologies, ...
Spinal cord injury (SCI) disrupts communication within central nervous system and lead to range of neurological disorders including paralysis. Current rehabilitation strategies to restore locomotion are poorly effective in people with severe SCI. Epidural ...
Aquatic stepping gaits in animals arguably display higher speed performance as well as energetic efficiency compared to other gaits using the limbs (i.e walking). This suggest that the foot structure and function contributes at a great extent on the propul ...
Bipedal locomotion is a remarkable feature of humans. This skill is necessary for the activities of daily living. Unfortunately, many people only partially benefit from it or miss it entirely because of a disability. This may result in a slower gait, less ...
This paper gives a new formulation to design adaptive structures through total energy optimization (TEO). This methodology enables the design of truss as well as tensegrity configurations that are equipped with linear actuators to counteract the effect of ...
Powered exoskeletons are among the emerging technologies claiming to assist functional ambulation. The potential to adapt robotic assistance based on specific motor abilities of incomplete spinal cord injury (iSCI) subjects, is crucial to optimize Human-Ro ...
Currently, there are more than 30 million amputees in the world and each year thousands of people suffer from amputation and, therefore, the development of lower limb prostheses is crucial to improve the quality of millions of people's lives by restoring t ...
Human locomotion shows fascinating abilities which are the results of the interplay between the environment, the biomechanics, the spinal cord, and modulation from higher control centers. How the different structures interact to generate meaningful behavio ...
Thanks to better actuator technologies and control algorithms, humanoid robots to date can perform a wide range of locomotion activities outside lab environments. These robots face various control challenges like high dimensionality, contact switches durin ...
Sprawling posture robots are characterized by upper limb segments protruding horizontally from the body, resulting in lower body height and wider support on the ground. Combined with an actuated segmented spine and tail, such morphology resembles that of s ...