Spin-weighted spherical harmonicsIn special functions, a topic in mathematics, spin-weighted spherical harmonics are generalizations of the standard spherical harmonics and—like the usual spherical harmonics—are functions on the sphere. Unlike ordinary spherical harmonics, the spin-weighted harmonics are U(1) gauge fields rather than scalar fields: mathematically, they take values in a complex line bundle. The spin-weighted harmonics are organized by degree l, just like ordinary spherical harmonics, but have an additional spin weight s that reflects the additional U(1) symmetry.
Quotient de RayleighEn mathématiques, pour une matrice hermitienne A et un vecteur x non nul, le quotient de Rayleigh est l’expression scalaire définie par où x désigne le vecteur adjoint de x. Pour une matrice symétrique à coefficients réels, le vecteur x est simplement son transposé x. Dans les deux cas, le quotient de Rayleigh fournit une valeur réelle qui renseigne sur le spectre de la matrice par les deux propriétés fondamentales suivantes : il atteint un point critique (extremum ou point-selle) au voisinage des vecteurs propres de la matrice ; appliqué à un vecteur propre, le quotient de Rayleigh fournit la valeur propre correspondante.
Gravitoélectromagnétismevignette|redresse=1.8|Diagramme d'effets mesurés par la sonde Gravity Probe B et décrits par le gravitoélectromagnétisme. Le gravitoélectromagnétisme, aussi nommé GEM, est une analogie entre les équations de l'électromagnétisme et celles de la gravitation, plus précisément entre les équations de Maxwell et une approximation, valide selon certaines conditions, des équations d'Einstein pour la relativité générale.