Mémoire de traductionUne mémoire de traduction est une base de données contenant des segments de texte ainsi que l'équivalent de ces segments dans une autre langue. Elle permet de stocker des segments de phrase et de les réutiliser. On parle dans ce cas de traduction assistée par ordinateur (ou TAO) plutôt que de traduction automatique, expression généralement utilisée pour définir les logiciels qui ne nécessitent pas l'intervention de traducteurs pour traduire le texte, mais qui sont toutefois beaucoup plus approximatifs.
Résumé automatique de texteUn résumé est une forme de compression textuelle avec perte d'information. Un résumé automatique de texte est une version condensée d'un document textuel, obtenu au moyen de techniques informatiques. La forme la plus connue et la plus visible des condensés de textes est le résumé, représentation abrégée et exacte du contenu d'un document. Cependant, produire un résumé pertinent et de qualité demande au résumeur (un humain ou un système automatique) l'effort de sélectionner, d'évaluer, d'organiser et d'assembler des segments d'information selon leur pertinence.
Similarity measureIn statistics and related fields, a similarity measure or similarity function or similarity metric is a real-valued function that quantifies the similarity between two objects. Although no single definition of a similarity exists, usually such measures are in some sense the inverse of distance metrics: they take on large values for similar objects and either zero or a negative value for very dissimilar objects. Though, in more broad terms, a similarity function may also satisfy metric axioms.
Web scrapingLe web scraping, parfois appelé harvesting ou en français moissonnage, est une technique d'extraction des données de sites Web par l'utilisation d'un script ou d'un programme dans le but de les transformer et les réutiliser dans un autre contexte comme l'enrichissement de bases de données, le référencement ou l'exploration de données. Aux États-Unis, la société hiQ Labs utilise le web scraping sur les données de LinkedIn à des fins de recrutement.
Grand modèle de langageUn grand modèle de langage, grand modèle linguistique, grand modèle de langue, modèle massif de langage ou encore modèle de langage de grande taille (LLM, pour l'anglais large language model) est un modèle de langage possédant un grand nombre de paramètres (généralement de l'ordre du milliard de poids ou plus). Ce sont des réseaux de neurones profonds entraînés sur de grandes quantités de texte non étiqueté utilisant l'apprentissage auto-supervisé ou l'apprentissage semi-supervisé.
Web sémantiquevignette|300px|droite|Logo du W3C pour le Web sémantique Le Web sémantique, ou toile sémantique, est une extension du Web standardisée par le World Wide Web Consortium (W3C). Ces standards encouragent l'utilisation de formats de données et de protocoles d'échange normés sur le Web, en s'appuyant sur le modèle Resource Description Framework (RDF). Le Web sémantique est par certains qualifié de Web 3.0. Selon le W3C, . L'expression a été inventée par Tim Berners-Lee (inventeur du Web et directeur du W3C), qui supervise le développement des technologies communes du Web sémantique.
Transformeurvignette|Schéma représentant l'architecture générale d'un transformeur. Un transformeur (ou modèle auto-attentif) est un modèle d'apprentissage profond introduit en 2017, utilisé principalement dans le domaine du traitement automatique des langues (TAL). Dès 2020, les transformeurs commencent aussi à trouver une application en matière de vision par ordinateur par la création des vision transformers (ViT).
Annotation (informatique)En programmation, une annotation est un élément permettant d'ajouter des méta-données à un code source. Selon le langage de programmation et ce qu'a choisi le programmeur, elles peuvent être accessibles uniquement lors de la compilation, présentes uniquement dans le fichier compilé, voire accessibles à l'exécution. Cette technique est une alternative aux fichiers de configuration, souvent écrits dans des formats tels que le XML ou le YAML.
Semantic technologyThe ultimate goal of semantic technology is to help machines understand data. To enable the encoding of semantics with the data, well-known technologies are RDF (Resource Description Framework) and OWL (Web Ontology Language). These technologies formally represent the meaning involved in information. For example, ontology can describe concepts, relationships between things, and categories of things. These embedded semantics with the data offer significant advantages such as reasoning over data and dealing with heterogeneous data sources.
Apprentissage de métriquesLa métrique, aussi appelée distance ou similarité, permet de mesurer le degré de parenté de deux éléments d'un même ensemble. Elle est utilisée dans le domaine de l'apprentissage dans des applications de classification ou de régression. La qualité de ces métriques est primordiale pour ces applications, d'où l'existence de méthodes d'apprentissage de distances. Ces méthodes se divisent en plusieurs catégories : supervisées ou non-supervisées selon les données mises à disposition.