PhotoluminescenceLa photoluminescence (PL) est un processus par lequel une substance absorbe des photons puis ré-émet des photons. Dans le cas d'un semi-conducteur, le principe est d'exciter des électrons de la bande de valence avec un photon d'une énergie supérieure à l'énergie de gap du composé, de telle sorte qu'ils se retrouvent dans la bande de conduction. L'excitation fait donc passer les électrons vers un état d'énergie supérieure avant qu'ils ne reviennent vers un niveau énergétique plus bas avec émission d'un photon.
Spin echoIn magnetic resonance, a spin echo or Hahn echo is the refocusing of spin magnetisation by a pulse of resonant electromagnetic radiation. Modern nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) make use of this effect. The NMR signal observed following an initial excitation pulse decays with time due to both spin relaxation and any inhomogeneous effects which cause spins in the sample to precess at different rates. The first of these, relaxation, leads to an irreversible loss of magnetisation.
Physique mésoscopiqueLa physique mésoscopique est un domaine de la physique de la matière condensée qui étudie les systèmes ayant des dimensions intermédiaires entre celles de la physique quantique et de la physique classique. L'échelle des distances en cause s'étend des dimensions de l'atome jusqu'au micromètre. La dimension mésoscopique est une dimension intermédiaire entre la dimension macroscopique et la dimension microscopique. Elle permet des études statistiques du système étudié.
Conversion intersystèmeL'IUPAC décrit la conversion intersystème comme : Lorsque, dans une molécule, un électron est excité jusqu'à un niveau d'énergie supérieur (notamment par absorption d'un rayonnement), cela conduit selon les cas à un état singulet ou à un état triplet : Un état singulet correspond à une configuration électronique dans laquelle tous les électrons de spin opposés sont appariés deux à deux (ce qu'on représente par le diagramme ), y compris l'électron excité bien qu'il occupe un niveau d'énergie différent des éle
Confinement de couleurLe confinement de couleur (ou simplement confinement) est une propriété des particules élémentaires possédant une charge de couleur : ces particules ne peuvent être isolées et sont observées uniquement avec d'autres particules de telle sorte que la combinaison formée soit blanche, c’est-à-dire que sa charge de couleur totale soit nulle. Cette propriété est à l'origine de l'existence des hadrons. Le phénomène est décrit dans le cadre de la chromodynamique quantique (ou CDQ, QCD en anglais).
ScintillateurUn scintillateur est un matériau qui émet de la lumière à la suite de l'absorption d'un rayonnement ionisant (photon ou particule chargée). Il existe deux grandes familles de scintillateurs : les scintillateurs organiques : (anthracène, naphtalène, stilbène et terphényle) que l'on retrouve sous forme de monocristaux ou en solution liquide, les scintillateurs inorganiques utilisés sous forme de monocristaux (iodure de sodium, germanate de bismuth), ou bien sous forme de poudres incorporées à un substrat.
Gravité quantiqueLa gravité quantique est une branche de la physique théorique tentant d'unifier la mécanique quantique et la relativité générale. Une telle théorie permettrait notamment de comprendre les phénomènes impliquant de grandes quantités de matière ou d'énergie sur de petites dimensions spatiales, tels que les trous noirs ou l'origine de l'Univers. L'approche générale utilisée pour obtenir une théorie de la gravité quantique est, présumant que la théorie sous-jacente doit être simple et élégante, d'examiner les symétries et indices permettant de combiner mécanique quantique et la relativité générale en une théorie globale unifiée.
Chromodynamique quantiqueLa chromodynamique quantique (en abrégé CDQ ou QCD, ce dernier de l'anglais Quantum ChromoDynamics) est une théorie physique qui décrit l’interaction forte, l’une des quatre forces fondamentales, qui permet de comprendre les interactions entre les quarks et les gluons et, au passage, la cohésion du noyau atomique. Elle fut proposée en 1973 par H. David Politzer, Frank Wilczek et David Gross pour comprendre la structure des hadrons (c'est-à-dire d'une part les baryons comme les protons, neutrons et particules similaires, et d'autre part les mésons).
État tripletvignette| Exemples d'états singulet, doublet, triplet. En chimie quantique, un état triplet caractérise un atome ou une molécule ayant deux électrons non appariés de spin parallèle ( ou ) chacun sur une orbitale atomique propre, de telle sorte que leur multiplicité de spin soit égale à . On peut observer un état triplet par exemple lorsqu'un électron est excité et occupe une orbitale de niveau d'énergie plus élevé qu'à son état fondamental : si le spin de cet électron change de sens, il forme, avec l'électron auquel il était apparié, un système de deux électrons célibataires aux spins parallèles.
Transfert d'énergie entre molécules fluorescentesLe transfert d'énergie entre molécules fluorescentes ou transfert d'énergie par résonance de type Förster (en anglais, Förster resonance energy transfer ou FRET, resonance energy transfer ou RET ou electronic energy transfer ou EET), bien qu’observé par Perrin au début du , est décrit pour la première fois par Theodor Förster en 1946. Les applications de cette approche à l’étude des interactions protéiques apparaîtront vers la fin du . vignette|Figure 1. Conditions du FRET. A.