Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
ComportementLe terme « comportement » désigne les actions d'un être vivant. Il a été introduit en psychologie française en 1908 par Henri Piéron comme équivalent français de l'anglais-américain behavior. On l'utilise notamment en éthologie (humaine et animale) ou en psychologie expérimentale. Il peut aussi être pris comme équivalent de conduite dans l'approche psychanalytique. Le comportement d'un être vivant est la partie de son activité qui se manifeste à un observateur.
Behavior modificationBehavior modification is an early approach that used respondent and operant conditioning to change behavior. Based on methodological behaviorism, overt behavior was modified with consequences, including positive and negative reinforcement contingencies to increase desirable behavior, or administering positive and negative punishment and/or extinction to reduce problematic behavior. It also used Flooding desensitization to combat phobias.
Comportement humainvignette| Les Homo Sapiens (humains) affichent souvent différents types de comportement. Le comportement humain est la capacité potentielle et exprimée (mentalement, physiquement et socialement) d'individus ou de groupes humains à répondre à des stimuli internes et externes tout au long de leur vie. Alors que les traits spécifiques de la personnalité, du tempérament et de la génétique peuvent rester stables, d'autres comportements changent à mesure que l'on passe entre les étapes de la vie, c'est-à-dire de la naissance à l'adolescence, à l'âge adulte et, par exemple, à la parentalité et à la retraite.
Fonctionnement adaptatifLe fonctionnement adaptatif, parfois appelé comportement adaptatif, est la façon dont une entité (être humain, animal, entité économique, robot, acteur modélisé, etc.), seule ou avec d'autres, s'adapte aux exigences et contraintes de son environnement (ou de la vie courante pour l'Homme) pour atteindre un objectif particulier ou plus généralement pour vivre en s'adaptant aux contextes qu'il rencontre.
Analyse appliquée du comportementL'analyse du comportement appliquée, siglée ABA, en anglais Applied Behavior Analysis, se définit comme la science dans laquelle les techniques dérivées du béhaviorisme sont appliquées systématiquement afin d'améliorer des comportements socialement significatifs, et dans laquelle l'expérimentation est utilisée pour identifier les variables explicatives du comportement. L'analyse appliquée du comportement a remplacé la modification du comportement » (behavior modification) car cette dernière approche tentait de changer le comportement sans clarifier les interactions sous-jacentes avec l'environnement.
Q-learningvignette|400x400px|Dans le Q-learning, l'agent exécute une action a en fonction de l'état s et d'une fonction Q. Il perçoit alors le nouvel état s' et une récompense r de l'environnement. Il met alors à jour la fonction Q. Le nouvel état s' devient alors l'état s, et l'apprentissage continue. En intelligence artificielle, plus précisément en apprentissage automatique, le Q-learning est un algorithme d'apprentissage par renforcement. Il ne nécessite aucun modèle initial de l'environnement.