Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Noninvasive behavioral tracking of animals during experiments is crucial to many scientific pursuits. Extracting the poses of animals without using markers is often essential for measuring behavioral effects in biomechanics, genetics, ethology & neuroscience. Yet, extracting detailed poses without markers in dynamically changing backgrounds has been challenging. We recently introduced an open source toolbox called DeepLabCut that builds on a state-of-the-art human pose estimation algorithm to allow a user to train a deep neural network using limited training data to precisely track user-defined features that matches human labeling accuracy. Here, with this paper we provide an updated toolbox that is self contained within a Python package that includes new features such as graphical user interfaces and active-learning based network refinement. Lastly, we provide a step-by-step guide for using DeepLabCut.
Sahand Jamal Rahi, Kseniia Korchagina