Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Nom de domaineUn nom de domaine (NDD en notation abrégée française ou DN pour Domain Name en anglais) est, dans le système de noms de domaine DNS, un identifiant de domaine internet. Un domaine est un ensemble d'ordinateurs reliés à Internet et possédant une caractéristique commune. Par exemple, un domaine tel que .fr est l'ensemble des ordinateurs hébergeant des activités pour des personnes ou des organisations qui se sont enregistrées auprès de l'Association française pour le nommage Internet en coopération (AFNIC) qui est le registre responsable du domaine de premier niveau .
Registraire de nom de domaineUn registraire de nom de domaine ou bureau d'enregistrement est une société ou une association gérant la réservation de noms de domaine Internet, dans les domaines de premier niveau où il n'y a pas de vente directe pour le registre de noms de domaine. Le registraire est en contact direct avec le client final. Il s'est inscrit auprès des divers registres de noms de domaine en fonction des extensions qu'il souhaite commercialiser (il paye pour cela une redevance annuelle).
ImageNetImageNet est une base de données d'images annotées produit par l'organisation du même nom, à destination des travaux de recherche en vision par ordinateur. En 2016, plus de dix millions d'URLs ont été annotées à la main pour indiquer quels objets sont représentés dans l'image ; plus d'un million d'images bénéficient en plus de boîtes englobantes autour des objets. La base de données d'annotations sur des URL d'images tierces est disponible librement, ImageNet ne possédant cependant pas les images elles-mêmes.
Réseau de neurones récurrentsUn réseau de neurones récurrents (RNN pour recurrent neural network en anglais) est un réseau de neurones artificiels présentant des connexions récurrentes. Un réseau de neurones récurrents est constitué d'unités (neurones) interconnectées interagissant non-linéairement et pour lequel il existe au moins un cycle dans la structure. Les unités sont reliées par des arcs (synapses) qui possèdent un poids. La sortie d'un neurone est une combinaison non linéaire de ses entrées.
Neural networkA neural network can refer to a neural circuit of biological neurons (sometimes also called a biological neural network), a network of artificial neurons or nodes in the case of an artificial neural network. Artificial neural networks are used for solving artificial intelligence (AI) problems; they model connections of biological neurons as weights between nodes. A positive weight reflects an excitatory connection, while negative values mean inhibitory connections. All inputs are modified by a weight and summed.
Réseaux antagonistes génératifsEn intelligence artificielle, les réseaux antagonistes génératifs (RAG) parfois aussi appelés réseaux adverses génératifs (en anglais generative adversarial networks ou GANs) sont une classe d'algorithmes d'apprentissage non supervisé. Ces algorithmes ont été introduits par . Ils permettent de générer des images avec un fort degré de réalisme. Un GAN est un modèle génératif où deux réseaux sont placés en compétition dans un scénario de théorie des jeux. Le premier réseau est le générateur, il génère un échantillon (ex.
Domaine de premier niveauUn domaine de premier niveau ou un domaine de tête (top-level domain, ou TLD), aussi appelé une extension, est, dans le système de noms de domaine internet, un sous-domaine de la racine. Dans un nom de domaine, le domaine de premier niveau est généralement le dernier élément du nom de domaine (exemple : dans , le domaine de premier niveau est ). vignette|Exemples de domaines de premier niveau. Le dernier point est optionnel. À l'origine, il indiquait la fin du nom de domaine. Par simplicité, l'usage courant est de ne plus l'indiquer.
Auto-encodeur variationnelEn apprentissage automatique, un auto-encodeur variationnel (ou VAE de l'anglais variational auto encoder), est une architecture de réseau de neurones artificiels introduite en 2013 par D. Kingma et M. Welling, appartenant aux familles des modèles graphiques probabilistes et des méthodes bayésiennes variationnelles. Les VAE sont souvent rapprochés des autoencodeurs en raison de leur architectures similaires. Leur utilisation et leur formulation mathématiques sont cependant différentes.