Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
Degrees of freedom problemIn neuroscience and motor control , the degrees of freedom problem or motor equivalence problem states that there are multiple ways for humans or animals to perform a movement in order to achieve the same goal. In other words, under normal circumstances, no simple one-to-one correspondence exists between a motor problem (or task) and a motor solution to the problem.
Motor skillA motor skill is a function that involves specific movements of the body's muscles to perform a certain task. These tasks could include walking, running, or riding a bike. In order to perform this skill, the body's nervous system, muscles, and brain have to all work together. The goal of motor skill is to optimize the ability to perform the skill at the rate of success, precision, and to reduce the energy consumption required for performance. Performance is an act of executing a motor skill or task.
Articulation temporo-mandibulaireL'articulation temporo-mandibulaire, abrégé ATM, est une diarthrose (ou synoviale, de type bi-condylaire) qui unit la fosse mandibulaire de l'os temporal avec le condyle de la mandibule par l'intermédiaire d'un disque articulaire fibrocartilagineux et fermée par une capsule articulaire. Le disque articulaire, de forme ellipsoïdale divise fonctionnellement l'articulation en deux. Ces deux articulations fonctionnent en synergie permettant d'obtenir des mouvements combinés.
Facial motion captureFacial motion capture is the process of electronically converting the movements of a person's face into a digital database using cameras or laser scanners. This database may then be used to produce computer graphics (CG), computer animation for movies, games, or real-time avatars. Because the motion of CG characters is derived from the movements of real people, it results in a more realistic and nuanced computer character animation than if the animation were created manually.
TrackingVideo tracking is the process of locating a moving object (or multiple objects) over time using a camera. It has a variety of uses, some of which are: human-computer interaction, security and surveillance, video communication and compression, augmented reality, traffic control, medical imaging and video editing. Video tracking can be a time-consuming process due to the amount of data that is contained in video. Adding further to the complexity is the possible need to use object recognition techniques for tracking, a challenging problem in its own right.
Planification motriceLa planification motrice est un processus cognitif et psychomoteur, permettant d’élaborer un mouvement volontaire et de l’organiser en séquences avant de l’exécuter . Pour ce faire, avant chaque mouvement, le cerveau établit un plan moteur composé d’images mentales qui s’enchaînent . Cela est possible parce qu’il s’agit d’un automatisme qui anticipe le résultat de chaque mouvement. Lors de l’étape suivante, le cerveau spécifie les paramètres du mouvement, c’est-à-dire les éléments spatio-temporels (direction, force, amplitude, vitesse) et visuo-spatiaux qui orienteront l’action .
Q-learningvignette|400x400px|Dans le Q-learning, l'agent exécute une action a en fonction de l'état s et d'une fonction Q. Il perçoit alors le nouvel état s' et une récompense r de l'environnement. Il met alors à jour la fonction Q. Le nouvel état s' devient alors l'état s, et l'apprentissage continue. En intelligence artificielle, plus précisément en apprentissage automatique, le Q-learning est un algorithme d'apprentissage par renforcement. Il ne nécessite aucun modèle initial de l'environnement.
Interactions homme-machinethumb|Personne plongée dans la réalité virtuelle grâce à un visiocasque et un gant électronique. thumb|L'interface homme-machine d'un des ordinateurs de bord des missions Apollo. L'interaction Homme-machine (ou interaction humain-machine), appelée IHM, s’intéresse à la conception et au développement de systèmes interactifs en prenant en compte ses impacts sociétaux et éthiques. Les humains interagissent avec les ordinateurs qui les entourent et cette interaction nécessite des interfaces qui facilitent la communication entre l'humain et la machine.
Méthode sans maillageIn the field of numerical analysis, meshfree methods are those that do not require connection between nodes of the simulation domain, i.e. a mesh, but are rather based on interaction of each node with all its neighbors. As a consequence, original extensive properties such as mass or kinetic energy are no longer assigned to mesh elements but rather to the single nodes. Meshfree methods enable the simulation of some otherwise difficult types of problems, at the cost of extra computing time and programming effort.