Optical-Microwave Pump-Probe Studies of Electronic Properties in Novel Materials
Publications associées (32)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The combination of quantum state-specific reactant preparation by infrared laser pumping with surface-site-resolved detection of chemisorbed reaction products by Reflection Absorption Infrared Spectroscopy (RAIRS) enables highly detailed studies of molecul ...
In magnetism, skyrmions correspond to classical three-dimensional spin textures characterized by a topological invariant that keeps track of the winding of the magnetization in real space, a property that cannot be easily generalized to the quantum case si ...
Position measurements of mechanical oscillators underpin experiments spanning from applied nanoscale sensing to endeavors aiming to resolve open fundamental problems of modern physics. Sufficiently precise position measurements are also used for engineerin ...
Methane dissociation on the step and terrace sites of a Pt(211) single crystal was studied by reflection absorption infrared spectroscopy (RAIRS) at a surface temperature of 120 K. The C−H stretch RAIRS signal of the chemisorbed methyl product species was ...
A primary challenge in quantum science and technology is to isolate the fragile quantum states from their environment in order to prevent the irreversible leakage of energy and information which causes decoherence. In the late 1990s, however, a new paradig ...
Isolation of a system from its environment is often desirable, from precision measurements to control of individual quantum systems; however, dissipation can also be a useful resource. Remarkably, engineered dissipation enables the preparation of quantum s ...
Quantum processors rely on classical electronic controllers to manipulate and read out the quantum state. As the performance of the quantum processor improves, non-idealities in the classical controller can become the performance bottleneck for the whole q ...
Quantum computing could potentially offer faster solutions for some of today's classically intractable problems using quantum processors as computational support for quantum algorithms [1]. Quantum processors, in the most frequent embodiment, comprise an a ...
Third-order non-linearities are important because they allow control over light pulses in ubiquitous high-quality centro-symmetric materials like silicon and silica. Degenerate four-wave mixing provides a direct measure of the third-order non-linear sheet ...
Electron spins hold great promise for quantum computation because of their long coherence times. Long-distance coherent coupling of spins is a crucial step towards quantum information processing with spin qubits. One approach to realizing interactions betw ...