Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The performance of organic-inorganic metal halide perovskites-based (MHPs) photovoltaic devices critically depends on the design and material properties of the interface between the light-harvesting MHP layer and the electron transport layer (ETL). Therefore, the detailed insight into the transfer mechanisms of photogenerated carriers at the ETL/MHP interface is of utmost importance. Owing to its high charge mobilities and well-matched band structure with MHPs, titanium dioxide (TiO2) has emerged as the most widely used ETL material in MHPs-based photovoltaic devices. Here, we report a contactless method to directly track the photo-carriers at the ETL/MHP interface using the technique of low-temperature electron paramagnetic resonance (EPR) in combination with in situ illuminations (Photo-EPR). Specifically, we focus on a model nanohybrid material consisting of TiO2-based nanowires (TiO(2)NWs) dispersed in the polycrystalline methylammonium lead triiodide (MAPbI(3)) matrix. Our approach is based on observation of the light-induced decrease in intensity of the EPR signal of paramagnetic Ti3+ ( S = 1 / 2 ) in non-stoichiometric TiO(2)NWs. We associate the diminishment of the EPR signal with the photo-excited electrons that cross the ETL/MHP interface and contribute to the conversion of Ti3+ states to EPR-silent Ti2+ states. Overall, we infer that the technique of low-temperature Photo-EPR is an effective strategy to study the transfer mechanisms of photogenerated carriers at the ETL/MHP interface in MAPbI(3)-based photovoltaic and photoelectronic systems.
Anna Fontcuberta i Morral, Elias Zsolt Stutz, Jean-Baptiste Leran, Mahdi Zamani, Simon Robert Escobar Steinvall, Rajrupa Paul, Mirjana Dimitrievska