Model-Class Selection Using Clustering and Classification for Structural Identification and Prediction
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In a society which produces and consumes an ever increasing amount of information, methods which can make sense out of al1 this data become of crucial importance. Machine learning tries to develop models which can make the information load accessible. Thre ...
Model selection is commonly based on some variation of the BIC or minimum message length criteria, such as MML and MDL. In either case the criterion is split into two terms: one for the model (data code length/model complexity) and one for the data given t ...
Accessing, organizing, and manipulating home videos present technical challenges due to their unrestricted content and lack of storyline. In this paper, we present a methodology to discover cluster structure in home videos, which uses video shots as the un ...
In time series analysis state-space models provide a wide and flexible class. The basic idea is to describe an unobservable phenomenon of interest on the basis of noisy data. The first constituent of such a model is the so-called state equation, which char ...
This paper aims at investigating the use of sequential clustering for speaker diarization. Conventional diarization systems are based on parametric models and agglomerative clustering. In our previous work we proposed a non-parametric method based on the a ...
In this paper, we investigate the use of agglomerative Information Bottleneck (aIB) clustering for the speaker diarization task of meetings data. In contrary to the state-of-the-art diarization systems that models individual speakers with Gaussian Mixture ...
In this paper, we investigate the use of agglomerative Information Bottleneck (aIB) clustering for the speaker diarization task of meetings data. In contrary to the state-of-the-art diarization systems that models individual speakers with Gaussian Mixture ...
We try to analyze a generic model for 2-tier distributed systems, exploring the possibility of optimal cluster sizes from an information management perspective, such that the overall cost for updating and searching information may be minimized by adopting ...
Video structuring aims at automatically finding structure in a video sequence. Occupying a key-position within video analysis, it is a fundamental step for quality indexing and browsing. As a low level video analysis, video structuring can be seen as a ser ...
Accessing, organizing, and manipulating home videos present technical challenges due to their unrestricted content and lack of storyline. In this paper, we present a methodology to discover cluster structure in home videos, which uses video shots as the un ...