Loi de RaoultEn physique, et plus particulièrement en thermodynamique, la loi de Raoult énonce que : Dans une solution idéale, à température constante, la pression partielle en phase vapeur d'un constituant est proportionnelle à sa fraction molaire en phase liquide. Cette loi a été établie empiriquement par le physicien français François-Marie Raoult en 1882, elle est dérivée de sa loi de la tonométrie. Elle est utilisée dans de nombreux domaines de la chimie, de la physique et de la météorologie.
Aluminium alloyAn aluminium alloy (or aluminum alloy; see spelling differences) is an alloy in which aluminium (Al) is the predominant metal. The typical alloying elements are copper, magnesium, manganese, silicon, tin, nickel and zinc. There are two principal classifications, namely casting alloys and wrought alloys, both of which are further subdivided into the categories heat-treatable and non-heat-treatable. About 85% of aluminium is used for wrought products, for example rolled plate, foils and extrusions.
Heat of dilutionIn thermochemistry, the heat of dilution, or enthalpy of dilution, refers to the enthalpy change associated with the dilution process of a component in a solution at a constant pressure. If the initial state of the component is a pure liquid (presuming the solution is liquid), the dilution process is equal to its dissolution process and the heat of dilution is the same as the heat of solution. Generally, the heat of dilution is normalized by the amount of the solution and its dimensional units are energy per unit mass or amount of substance, commonly expressed in the unit of kJ/mol (or J/mol).
Théorème de GibbsLe théorème de Gibbs permet de calculer l'entropie d'un mélange de gaz parfaits. Il s'énonce ainsi : L'entropie d'un mélange idéal de gaz parfaits est égale à la somme des entropies de ses constituants supposés séparés, à la température du mélange, et sous des pressions égales aux pressions partielles qu'ils exercent dans le mélange. Le théorème de Gibbs montre qu'un mélange de gaz parfaits est une solution idéale.
Recherche des deux points les plus rapprochésEn géométrie algorithmique, la recherche des deux points les plus rapprochés est le problème qui consiste à trouver une paire de points d'un ensemble fini de points dans un espace métrique dont la distance est minimale. Il fait partie des problèmes fondateurs de la géométrie algorithmique. En notant le nombre de points, l'algorithme naïf par recherche exhaustive a une complexité en temps en . Il y a en effet paires différentes à tester. Il existe un algorithme basé sur diviser pour régner en .