Niveau de FermiLe niveau de Fermi est une caractéristique propre à un système qui traduit la répartition des électrons dans ce système en fonction de la température. La notion de niveau de Fermi est utilisée en physique et en électronique, notamment dans le cadre du développement des composants semi-conducteurs. Concrètement, le niveau de Fermi est une fonction de la température mais il peut être considéré, en première approximation, comme une constante, laquelle équivaudrait alors au niveau de plus haute énergie occupé par les électrons du système à la température de .
Potentiel postsynaptiqueUn potentiel postsynaptique (PPS), encore appelé potentiel gradué ou potentiel électro-tonique, est le signal unitaire produit en aval d'une synapse. Il s'agit d'un changement transitoire et local de la différence de potentiel électrochimique établie de part et d'autre de la membrane. La plaque motrice est la zone synaptique entre le neurone et la cellule musculaire. Le neurotransmetteur mis en jeu est l'acétylcholine qui va se fixer sur un récepteur et va ainsi entraîner une dépolarisation.
Dynkin diagramIn the mathematical field of Lie theory, a Dynkin diagram, named for Eugene Dynkin, is a type of graph with some edges doubled or tripled (drawn as a double or triple line). Dynkin diagrams arise in the classification of semisimple Lie algebras over algebraically closed fields, in the classification of Weyl groups and other finite reflection groups, and in other contexts. Various properties of the Dynkin diagram (such as whether it contains multiple edges, or its symmetries) correspond to important features of the associated Lie algebra.
Tore maximalEn mathématiques, un tore maximal d'un groupe de Lie G est un sous-groupe de Lie commutatif, connexe et compact de G qui soit maximal pour ces propriétés. Les tores maximaux de G sont uniques à conjugaison près. De manière équivalente, c'est un de G, isomorphe à un tore, et maximal pour cette propriété. Le quotient du normalisateur N(T) d'un tore T par T est le groupe de Weyl associé. Tout groupe de Lie commutatif connexe est isomorphe à un quotient de Rn par un sous-réseau, donc à un tore Tn.