Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Over the past few years, there have been fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. The amount of annotated data drastically increased and supervised deep discriminative models exceed ...
It is becoming increasingly easy to automatically replace a face of one person in a video with the face of another person by using a pre-trained generative adversarial network (GAN). Recent public scandals, e.g., the faces of celebrities being swapped onto ...
We analyze the influence of adversarial training on the loss landscape of machine learning models. To this end, we first provide analytical studies of the properties of adversarial loss functions under different adversarial budgets. We then demonstrate tha ...
Today, recommender systems are an inevitable part of everyone's daily digital routine and are present on most internet platforms. State-of-the-art deep learning-based models require a large number of data to achieve their best performance. Many datasets fu ...
Coherent rendering in augmented reality deals with synthesizing virtual content that seamlessly blends in with the real content. Unfortunately, capturing or modeling every real aspect in the virtual rendering process is often unfeasible or too expensive. W ...
Deepfake videos, where a person’s face is automatically swapped with a face of someone else, are becoming easier to generate with more realistic results. In response to the threat such manipulations can pose to our trust in video evidence, several large da ...
We are witnessing a rise in the popularity of using artificial neural networks in many fields of science and technology. Deep neural networks in particular have shown impressive classification performance on a number of challenging benchmarks, generally in ...
While several research studies have focused on analyzing human behavior and, in particular, emotional signals from visual data, the problem of synthesizing face video sequences with specific attributes (e.g. age, facial expressions) received much less atte ...
In learning from demonstrations, many generative models of trajectories make simplifying assumptions of independence. Correctness is sacrificed in the name of tractability and speed of the learning phase. The ignored dependencies, which are often the kinem ...
Neural networks are highly effective tools for pose estimation. However, as in other computer vision tasks, robustness to out-of-domain data remains a challenge, especially for small training sets that are common for real-world applications. Here, we probe ...