Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In this paper, a module-level photovoltaic (PV) architecture in parallel configuration is introduced for maximum power extraction, under partial shading (PS) conditions. For the first time, a non-regulated switched capacitor (SC) nX converter is a used at the PV-side conversion stage, whose purpose is just to multiply the PV voltage by a fixed ratio and accordingly reduce the input current. All the control functions, including the maximum power point tracking, are transferred to the grid-side inverter. The voltage-multiplied PV modules (VMPVs) are connected in parallel to a common DC-bus, which offers expandability to the system and eliminates the PS issues of a typical string architecture. The advantage of the proposed approach is that the PV-side converter is relieved of bulky capacitors, filters, controllers and voltage/current sensors, allowing for a more compact and efficient conversion stage, compared to conventional per-module systems, such as microinverters. The proposed configuration was initially simulated in a 5 kW residential PV system and compared against conventional PV arrangements. For the experimental validation, a 10X Gallium Nitride (GaN) converter prototype was developed with a flat conversion efficiency of 96.3% throughout the power range. This is particularly advantageous, given the power production variability of PV generators. Subsequently, the VMPV architecture was tested on a two-module 500 WP prototype, exhibiting an excellent power extraction efficiency of over 99.7% under PS conditions and minimal DC-bus voltage variation of 3%, leading to a higher total system efficiency compared to most state-of-the-art configurations.