Publication

Last iterate convergence of SGD for Least-Squares in the Interpolation regime

Résumé

Motivated by the recent successes of neural networks that have the ability to fit the data perfectly \emph{and} generalize well, we study the noiseless model in the fundamental least-squares setup. We assume that an optimum predictor fits perfectly inputs and outputs θ,ϕ(X)=Y\langle \theta_* , \phi(X) \rangle = Y, where ϕ(X)\phi(X) stands for a possibly infinite dimensional non-linear feature map. To solve this problem, we consider the estimator given by the last iterate of stochastic gradient descent (SGD) with constant step-size. In this context, our contribution is two fold: (i) \emph{from a (stochastic) optimization perspective}, we exhibit an archetypal problem where we can show explicitly the convergence of SGD final iterate for a non-strongly convex problem with constant step-size whereas usual results use some form of average and (ii) \emph{from a statistical perspective}, we give explicit non-asymptotic convergence rates in the over-parameterized setting and leverage a \emph{fine-grained} parameterization of the problem to exhibit polynomial rates that can be faster than O(1/T)O(1/T). The link with reproducing kernel Hilbert spaces is established.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.