Tracking and Relative Localization of Drone Swarms With a Vision-Based Headset
Publications associées (139)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Deep Neural Networks (DNNs) training can be difficult due to vanishing and exploding gradients during weight optimization through backpropagation. To address this problem, we propose a general class of Hamiltonian DNNs (H-DNNs) that stem from the discretiz ...
In recent years, there has been a significant revolution in the field of deep learning, which has demonstrated its effectiveness in automatically capturing intricate patterns from large datasets. However, the majority of these successes in Computer Vision ...
EPFL2023
Photometric stereo, a computer vision technique for estimating the 3D shape of objects through images captured under varying illumination conditions, has been a topic of research for nearly four decades. In its general formulation, photometric stereo is an ...
EPFL2024
We consider the problem of compressing an information source when a correlated one is available as side information only at the decoder side, which is a special case of the distributed source coding problem in information theory. In particular, we consider ...
IEEE COMPUTER SOC2023
, , ,
A central question of machine learning is how deep nets manage to learn tasks in high dimensions. An appealing hypothesis is that they achieve this feat by building a representation of the data where information irrelevant to the task is lost. For image da ...
Bristol2023
Deep neural networks have become ubiquitous in today's technological landscape, finding their way in a vast array of applications. Deep supervised learning, which relies on large labeled datasets, has been particularly successful in areas such as image cla ...
EPFL2023
To obtain a more complete understanding of material microstructure at the nanoscale and to gain profound insights into their properties, there is a growing need for more efficient and precise methods that can streamline the process of 3D imaging using a tr ...
Vehicles can encounter a myriad of obstacles on the road, and it is impossible to record them all beforehand to train a detector. Instead, we select image patches and inpaint them with the surrounding road texture, which tends to remove obstacles from thos ...
Aerodynamic shape optimization (ASO) is a key technique in aerodynamic designs, aimed at enhancing an object’s physical performance while adhering to specific constraints. Traditional parameterization methods for ASO often require substantial manual tuning ...
In recent years, new emerging immersive imaging modalities, e.g. light fields, have been receiving growing attention, becoming increasingly widespread over the years. Light fields are often captured through multi-camera arrays or plenoptic cameras, with th ...