Trois dimensions, tridimensionnel ou 3D sont des expressions qui caractérisent l'espace qui nous entoure, tel que perçu par notre vision, en ce qui concerne la largeur, la hauteur et la profondeur. Le terme « 3D » est également (et improprement) utilisé (surtout en anglais) pour désigner la représentation en (numérique), le relief des images stéréoscopiques ou autres , et même parfois le simple effet stéréophonique, qui ne peut par construction rendre que de la 2D (il ne s'agit donc que du calcul des projections perspectives, des ombrages, des rendus de matières).
La longueur d’onde est une grandeur physique caractéristique d'une onde monochromatique dans un milieu homogène, définie comme la distance séparant deux maxima consécutifs de l'amplitude. La longueur d'onde dépend de la célérité ou vitesse de propagation de l'onde dans le milieu qu'elle traverse. Lorsque l'onde passe d'un milieu à un autre, dans lequel sa célérité est différente, sa fréquence reste inchangée, mais sa longueur d'onde varie . Lorsque l'onde n'est pas monochromatique, l'analyse harmonique permet de la décomposer en une somme d'ondes monochromatiques.
La diffusion est le phénomène par lequel un rayonnement, comme la lumière, le son ou un faisceau de particules, est dévié dans diverses directions par une interaction avec d'autres objets. La diffusion peut être isotrope, c'est-à-dire répartie uniformément dans toutes les directions, ou anisotrope. En particulier, la fraction de l'onde incidente qui est retournée dans la direction d'où elle provient est appelée rétrodiffusion (backscatter en anglais). La diffusion peut s'effectuer avec ou sans variation de fréquence.
frame|L'équivalent en quatre dimensions du cube est le tesseract. On le voit ici en rotation, projeté dans l'espace usuel (les arêtes représentées comme des tubes bleus sur fond noir).|alt=Animation d'un tesseract (les arêtes représentées comme des tubes bleus sur fond noir). En mathématiques, et plus spécialement en géométrie, l'espace à quatre dimensions (souvent abrégé en 4D ; on parlera par exemple de rotations en 4D) est une extension abstraite du concept de l'espace usuel vu comme espace à trois dimensions : tandis que l'espace tridimensionnel nécessite la donnée de trois nombres, appelés dimensions, pour décrire la taille ou la position des objets, l'espace à quatre dimensions en nécessite quatre.
Le terme dimension, du latin dimensio « action de mesurer », désigne d’abord chacune des grandeurs d’un objet : longueur, largeur et profondeur, épaisseur ou hauteur, ou encore son diamètre si c'est une pièce de révolution. L’acception a dérivé de deux façons différentes en physique et en mathématiques. En physique, la dimension qualifie une grandeur indépendamment de son unité de mesure, tandis qu’en mathématiques, la notion de dimension correspond au nombre de grandeurs nécessaires pour identifier un objet, avec des définitions spécifiques selon le type d’objet (algébrique, topologique ou combinatoire notamment).
thumb|Diodes de différentes couleurs.|alt= thumb|upright|Symbole de la diode électroluminescente.|alt= Une diode électroluminescente (abrégé en DEL en français, ou LED, de llight-emitting diode) est un dispositif opto-électronique capable d'émettre de la lumière lorsqu'il est parcouru par un courant électrique. Une diode électroluminescente ne laisse passer le courant électrique que dans un seul sens et produit un rayonnement monochromatique ou polychromatique non cohérent par conversion d'énergie électrique lorsqu'un courant la traverse.
vignette|Rayons de lumière sortant des nuages. Dans son sens le plus habituel, la lumière est le phénomène à l'origine d'une sensation visuelle. La physique montre qu'il s'agit d'ondes électromagnétiques. Le spectre visible est la zone du spectre électromagnétique à laquelle est sensible l'espèce humaine ; il inclut la longueur d'onde où l'éclairement énergétique solaire est maximal à la surface de la Terre, par un effet d'adaptation à l'environnement. Il s'étend autour d'une longueur d'onde de , plus ou moins un tiers.
La diffusion Rayleigh est un mode de diffusion des ondes, par exemple électromagnétiques ou sonores. Elle opère lorsque la longueur d'onde est beaucoup plus grande que la taille des particules diffusantes. On parle de diffusion élastique, car cela se fait sans variation d'énergie, autrement dit l'onde conserve la même longueur d'onde. Elle est nommée d'après John William Strutt Rayleigh, qui en a fait la découverte.
En optique ondulatoire, la théorie de Mie, ou solution de Mie, est une solution particulière des équations de Maxwell décrivant la diffusion élastique – c'est-à-dire sans changement de longueur d'onde – d'une onde électromagnétique plane par une particule sphérique caractérisée par son diamètre et son indice de réfraction complexe. Elle tire son nom du physicien allemand Gustav Mie, qui la décrivit en détail en 1908. Le travail de son prédécesseur Ludvig Lorenz est aujourd'hui reconnu comme « empiriquement équivalent » et l'on parle parfois de la théorie de Lorenz-Mie.
En physique, la diffusion Compton (aussi appelée effet Compton) est une diffusion élastique (reposant sur la conservation de l'énergie cinétique globale du système étudié) lorsqu'on considère un électron libre, mais inélastique pour un électron lié. Ce phénomène s'observe lorsqu'un photon incident entre en collision avec un électron libre (ou plus précisément avec un électron faiblement lié) d'un atome. Au cours de ce processus, l'électron est éjecté de l'atome, qui est donc ionisé, tandis qu'un photon est diffusé.