Lifelong Machine Learning with Data Efficiency and Knowledge Retention
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Neural networks (NNs) have been very successful in a variety of tasks ranging from machine translation to image classification. Despite their success, the reasons for their performance are still not well-understood. This thesis explores two main themes: lo ...
Some governance functions traditionally performed by humans are increasingly informed and sometimes automatically executed by machine learning algorithms (governance by machine learning) to benefit society. Therefore, it is necessary to think also about th ...
Distribution shift is omnipresent in geographic data, where various climatic and cultural factors lead to different representations across the globe. We aim to adapt dynamically to unseen data distributions with model-agnostic meta-learning, where data sa ...
In a geotechnical excavation, back analyses are routinely performed using the measured field responses to derive the material parameter values for the different soil layers present at the site. For the purpose of back analyses, the engineers will usually m ...
The utility of machine learning in understanding the motor system is promising a revolution in how to collect, measure, and analyze data. The field of movement science already elegantly incorporates theory and engineering principles to guide experimental w ...
Progress in computing capabilities has enhanced science in many ways. In recent years, various branches of machine learning have been the key facilitators in forging new paths, ranging from categorizing big data to instrumental control, from materials desi ...
In the age of digital and big data, the interaction with machines is central and emphasizes the sophistication of user interfaces and browsing tools. However, in the domain of digital artwork collections, most platforms propose access to images through key ...
Learning to predict accurately from a few data samples is a central challenge in modern data-hungry machine learning. On natural images, human vision typically outperforms deep learning approaches on few-shot learning. However, we hypothesize that aerial a ...
The objective of meta-learning is to exploit knowledge obtained from observed tasks to improve adaptation to unseen tasks. Meta-learners are able to generalize better when they are trained with a larger number of observed tasks and with a larger amount of ...
Recent breakthroughs in deep learning often rely on representation learning and knowledge transfer. In recent years, unsupervised and self-supervised techniques for learning speech representation were developed to foster automatic speech recognition. Up to ...
EUROPEAN ASSOC SIGNAL SPEECH & IMAGE PROCESSING-EURASIP2021