Publication

Local Non-Rigid Structure-from-Motion from Diffeomorphic Mappings

Pascal Fua, Mathieu Salzmann, Shaifali Parashar
2020
Article de conférence
Résumé

We propose a new formulation to non-rigid structure-from-motion that only requires the deforming surface to preserve its differential structure. This is a much weaker assumption than the traditional ones of isometry or conformality. We show that it is nevertheless sufficient to establish local correspondences between the surface in two different images and therefore to perform point-wise reconstruction using only first-order derivatives. To this end, we formulate differential constraints and solve them algebraically using the theory of resultants. We will demonstrate that our approach is more widely applicable, more stable in noisy and sparse imaging conditions and much faster than earlier ones, while delivering similar accuracy. The code is available at https//github.com/cvlab-epf1/diff-nrsfm/.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (31)
Dérivée
En mathématiques, la dérivée d'une fonction d'une variable réelle mesure l'ampleur du changement de la valeur de la fonction (valeur de sortie) par rapport à un petit changement de son argument (valeur d'entrée). Les calculs de dérivées sont un outil fondamental du calcul infinitésimal. Par exemple, la dérivée de la position d'un objet en mouvement par rapport au temps est la vitesse (instantanée) de l'objet. La dérivée d'une fonction est une fonction qui, à tout nombre pour lequel admet un nombre dérivé, associe ce nombre dérivé.
Dérivée seconde
La dérivée seconde est la dérivée de la dérivée d'une fonction, lorsqu'elle est définie. Elle permet de mesurer l'évolution des taux de variations. Par exemple, la dérivée seconde du déplacement par rapport au temps est la variation de la vitesse (taux de variation du déplacement), soit l'accélération. Si la fonction admet une dérivée seconde, on dit qu'elle est de classe D2 ; si de plus cette dérivée seconde est continue, la fonction est dite de classe C2.
Test de la dérivée première
En analyse réelle, le test de la dérivée première permet de déterminer l'allure d'une fonction dérivable en étudiant le signe de sa dérivée. Grâce à ce test, on peut déduire les extrema locaux, le sens de variation de f et les points d'inflexion « horizontaux », permettant ainsi de donner une allure du graphe de la fonction . Soit avec un intervalle ouvert réel (par exemple où et sont des réels). On suppose de plus que dérivable sur .
Afficher plus
Publications associées (47)

IMPROVED REGULARITY OF SECOND DERIVATIVES FOR SUBHARMONIC FUNCTIONS

Xavier Fernandez-Real Girona, Riccardo Tione

In this note, we prove that if a subharmonic function Delta u >= 0 has pure second derivatives partial derivative(ii)u that are signed measures, then their negative part (partial derivative(ii)u)- belongs to L-1 (in particular, it is not singular). We then ...
Providence2023

Stochastic derivative estimation for max-stable random fields

Erwan Fabrice Koch

We consider expected performances based on max-stable random fields and we are interested in their derivatives with respect to the spatial dependence parameters of those fields. Max-stable fields, such as the Brown-Resnick and Smith fields, are very popula ...
ELSEVIER2022

Learning of Continuous and Piecewise-Linear Functions With Hessian Total-Variation Regularization

Michaël Unser, Shayan Aziznejad, Joaquim Gonçalves Garcia Barreto Campos

We develop a novel 2D functional learning framework that employs a sparsity-promoting regularization based on second-order derivatives. Motivated by the nature of the regularizer, we restrict the search space to the span of piecewise-linear box splines shi ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2022
Afficher plus
MOOCs associés (2)
Warm-up for EPFL
Warmup EPFL est destiné aux nouvelles étudiantes et étudiants de l'EPFL.
Introduction to optimization on smooth manifolds: first order methods
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.