IdentifiantUn identifiant est une sorte de nom qui sert à identifier un objet précis dans un ensemble d'objets ; ou plus largement toute suite de caractères qui joue ce rôle-là. En principe, un identifiant devrait être unique pour chaque objet. En pratique (comme pour les noms de personnes ou de lieux) ce n'est pas toujours le cas, sauf s'il s'agit d'un ensemble d'identifiants défini par une norme technique. Un identifiant de métadonnée est un signe, une étiquette ou un jeton indépendant du langage, qui identifie de manière unique un objet au sein d'un schéma d'identification.
Échantillon biaiséEn statistiques, le mot biais a un sens précis qui n'est pas tout à fait le sens habituel du mot. Un échantillon biaisé est un ensemble d'individus d'une population, censé la représenter, mais dont la sélection des individus a introduit un biais qui ne permet alors plus de conclure directement pour l'ensemble de la population. Un échantillon biaisé n'est donc pas un échantillon de personnes biaisées (bien que ça puisse être le cas) mais avant tout un échantillon sélectionné de façon biaisée.
Object Process MethodologyObject process methodology (OPM) is a conceptual modeling language and methodology for capturing knowledge and designing systems, specified as ISO/PAS 19450. Based on a minimal universal ontology of stateful objects and processes that transform them, OPM can be used to formally specify the function, structure, and behavior of artificial and natural systems in a large variety of domains. OPM was conceived and developed by Dov Dori. The ideas underlying OPM were published for the first time in 1995.
Minimum message lengthMinimum message length (MML) is a Bayesian information-theoretic method for statistical model comparison and selection. It provides a formal information theory restatement of Occam's Razor: even when models are equal in their measure of fit-accuracy to the observed data, the one generating the most concise explanation of data is more likely to be correct (where the explanation consists of the statement of the model, followed by the lossless encoding of the data using the stated model).