Publication

A statistical approach for the automatic identification of the start of the chain of events leading to the disruptions at JET

Alessandro Pau
2021
Article
Résumé

This paper reports an algorithm to automatically identify the chain of events leading to a disruption, evaluating the so-called reference warning time. This time separates the plasma current flat-top of each disrupted discharge into two parts: a non-disrupted part and a pre-disrupted one. The algorithm can be framed into the anomaly detection techniques as it aims to detect the off-normal behavior of the plasma. It is based on a statistical analysis of a set of dimensionless plasma parameters computed for a selection of discharges from the JET experimental campaigns. In every data-driven model, such as the generative topographic mapping (GTM) predictor proposed in this paper, it is indeed necessary to label the samples needed for training the model itself. The samples describing the disruption-free behavior are extracted from the plasma current flat-top phase of the regularly terminated discharges. The disrupted space is described by all the samples belonging to the pre-disruptive phase of each disruptive discharge in the training set. Note that a proper selection of the pre-disruptive phase plays a key role in the prediction performance of the model. Moreover, these models, which are highly dependent on the training input space, may be particularly prone to degradation as the operational space of any experimental machine is continuously evolving. Hence, a regular schedule of model review and retrain must be planned. The proposed algorithm avoids the cumbersome and time-consuming manual identification of the warning times, helping to implement a continuous learning system that could be automated, despite being offline. In this paper, the automatically evaluated warning times are compared with those obtained with a manual analysis in terms of the impact on the mapping of the JET input parameter space using the GTM methodology. Moreover, the algorithm has been used to build the GTM of recent experimental campaigns, with promising results.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (34)
Effet corona
thumb|Effet corona autour d'une bobine haute tension. thumb|Photo de 1914 : effet corona autour des fils d'antenne TSF de la tour Eiffel, de nuit. thumb|Effet de couronne sur un éclateur (ligne de ) ; il correspond à une perte en ligne et à une production d'ozone troposphérique polluant. thumb|Décharge corona ici provoquée sur une roulette de Wartenberg (dispositif médical utilisé en neurologie), montrant bien la directionnalité du plasma induit.
Brush discharge
A brush discharge is an electrical disruptive discharge similar to a corona discharge that takes place at an electrode with a high voltage applied to it, embedded in a nonconducting fluid, usually air. It is characterized by multiple luminous writhing sparks, plasma streamers composed of ionized air molecules, which repeatedly strike out from the electrode into the air, often with a crackling sound. The streamers spread out in a fan shape, giving it the appearance of a "brush".
Claquage (électronique)
vignette|Ralenti Modification de Claquage, Université d'Ariel En électronique ou électrotechnique, le claquage est un phénomène qui se produit dans un isolant quand le champ électrique est plus important que ce que peut supporter cet isolant. Il se forme alors un arc électrique. Dans un condensateur, lorsque la tension atteint une valeur suffisante pour qu'un courant s'établisse au travers de l'isolant (ou diélectrique), cette tension critique est appelée tension de claquage.
Afficher plus
Publications associées (40)

Higher Order Asymptotics: Applications to Satellite Conjunction and Boundary Problems

Soumaya Elkantassi

Higher-order asymptotics provide accurate approximations for use in parametric statistical modelling. In this thesis, we investigate using higher-order approximations in two-specific settings, with a particular emphasis on the tangent exponential model. Th ...
EPFL2023

Collaborative Sampling in Generative Adversarial Networks

Alexandre Massoud Alahi, Yuejiang Liu, Parth Ashit Kothari

The standard practice in Generative Adversarial Networks (GANs) discards the discriminator during sampling. However, this sampling method loses valuable information learned by the discriminator regarding the data distribution. In this work, we propose a co ...
2020

Observation of the doubly Cabibbo-suppressed decay Xi(+)(c) -> p phi

Afficher plus
MOOCs associés (13)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.