Résumé
thumb|Effet corona autour d'une bobine haute tension. thumb|Photo de 1914 : effet corona autour des fils d'antenne TSF de la tour Eiffel, de nuit. thumb|Effet de couronne sur un éclateur (ligne de ) ; il correspond à une perte en ligne et à une production d'ozone troposphérique polluant. thumb|Décharge corona ici provoquée sur une roulette de Wartenberg (dispositif médical utilisé en neurologie), montrant bien la directionnalité du plasma induit. L'effet corona, aussi appelé « effet couronne » ou « effet de couronne », est un phénomène de entraînée par l'ionisation du milieu entourant un conducteur. Il apparaît quand le champ électrique dépasse une « valeur critique » (mais dont les conditions ne permettent pas la formation d'un arc). Il se manifeste par l'apparition de points lumineux bleuâtres (sur certaines aspérités métalliques) ou lignes lumineuses ou parfois d'une longue « gaine lumineuse » qui se forme autour des câbles (conducteurs aériens le plus souvent) transportant du courant sous haute tension. Cet effet (rare aux niveaux de tension de moins de ) n'est pas souhaitable sur les lignes électriques, mais est utilisé par l'industrie, entre autres, dans les lampes à plasma. Le feu de Saint-Elme et les aigrettes lumineuses qui apparaissent parfois sur les pointes métalliques ou diverses aspérités (mâts, paratonnerres, pics montagneux...) à l'approche d'un gros orage sont des formes naturelles de ce phénomène. L'effet de couronne a intrigué les physiciens dès qu'on l'a constaté. Son nom provient du fait qu'il évoque l'aspect du halo lumineux périphérique au soleil observé lors des éclipses. Il a fait l'objet de premières publications en 1915 par F.W. Peek qui a alors établi une première loi empirique exprimant le champ seuil d'apparition de cet effet.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (21)
ENV-424: Water resources engineering
Water resources engineering designs systems to control the quantity, quality, timing, and distribution of water to support human demands and the needs of the environment.
PHYS-452: Radiation detection
The course presents the detection of ionizing radiation in the keV and MeV energy ranges. Physical processes of radiation/matter interaction are introduced. All steps of detection are covered, as well
EE-603: Transient and dynamic analysis of electric power systems
The learning outcome is to increase the knowledge of simulation methods and the role of computers in the management and the operation of electric power systems.
Afficher plus
Séances de cours associées (48)
Fondements de l'hydrologie
Introduit les principes fondamentaux de l'hydrologie, couvrant l'humidité du sol, la modélisation des précipitations et les systèmes de réservoirs.
Production d'énergie hydroélectrique
Explore les principes de production d'hydroélectricité, les types de turbines, les méthodes d'extraction d'énergie et l'optimisation.
Seuils et seuils dans les rivières
Explore les principes de conception et de fonctionnement des seuils et des déversoirs dans les rivières, en soulignant leur pertinence et leur impact sur la protection et la gestion des rivières.
Afficher plus
Publications associées (358)
Concepts associés (24)
État plasma
thumb|upright|Le soleil est une boule de plasma. thumb|Lampe à plasma.|168x168px thumb|upright|Les flammes de haute température sont des plasmas. L'état plasma est un état de la matière, tout comme l'état solide, l'état liquide ou l'état gazeux, bien qu'il n'y ait pas de transition brusque pour passer d'un de ces états au plasma ou réciproquement. Il est visible sur Terre, à l'état naturel, le plus souvent à des températures élevées favorables aux ionisations, signifiant l’arrachement d'électrons aux atomes.
Arc électrique
Un arc électrique est un courant électrique visible dans un milieu isolant (gaz, air). La découverte des principes régissant ce phénomène est attribuée au chimiste et physicien anglais Humphry Davy en 1813. Son explication fait appel à une physique très complexe. En langage courant, un arc électrique de faible ampleur est une « étincelle » parfois lié à un court-circuit temporaire (Voir image à droite). vignette|Arcs électriques sur les rails du métro de Londres vignette|Arc électrique de sur un disjoncteur à courant continu.
Claquage (électronique)
vignette|Ralenti Modification de Claquage, Université d'Ariel En électronique ou électrotechnique, le claquage est un phénomène qui se produit dans un isolant quand le champ électrique est plus important que ce que peut supporter cet isolant. Il se forme alors un arc électrique. Dans un condensateur, lorsque la tension atteint une valeur suffisante pour qu'un courant s'établisse au travers de l'isolant (ou diélectrique), cette tension critique est appelée tension de claquage.
Afficher plus
MOOCs associés (7)
Plasma Physics and Applications [retired]
The first MOOC to teach the basics of plasma physics and its main applications: fusion energy, astrophysical and space plasmas, societal and industrial applications
Plasma Physics and Applications
The first MOOC to teach the basics of plasma physics and its main applications: fusion energy, astrophysical and space plasmas, societal and industrial applications
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Afficher plus