Asymptotic analysisIn mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior. As an illustration, suppose that we are interested in the properties of a function f (n) as n becomes very large. If f(n) = n2 + 3n, then as n becomes very large, the term 3n becomes insignificant compared to n2. The function f(n) is said to be "asymptotically equivalent to n2, as n → ∞". This is often written symbolically as f (n) ~ n2, which is read as "f(n) is asymptotic to n2".
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Fonction objectifvignette|comparaison de certains substituts de la fonction de perte Le terme fonction objectif ou fonction économique, est utilisé en optimisation mathématique et en recherche opérationnelle pour désigner une fonction qui sert de critère pour déterminer la meilleure solution à un problème d'optimisation. Elle associe une valeur à une instance d'un problème d'optimisation. Le but du problème d'optimisation est alors de minimiser ou de maximiser cette fonction jusqu'à l'optimum, par différents procédés comme l'algorithme du simplexe.
Apprentissage superviséL'apprentissage supervisé (supervised learning en anglais) est une tâche d'apprentissage automatique consistant à apprendre une fonction de prédiction à partir d'exemples annotés, au contraire de l'apprentissage non supervisé. On distingue les problèmes de régression des problèmes de classement. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.
Système de classeursUn système de classeurs (Learning Classifier System ou LCS en anglais) est un système d'apprentissage automatique utilisant l'apprentissage par renforcement et les algorithmes génétiques. Ils ont été introduits par Holland en 1977 et développé par Goldberg en 1989 Un système de classeurs (aussi appelé classifiers) est composé d'une base de règles, appelée classeur, associés à un poids. Chaque règle est composée d'une partie condition et d'une partie action. Le classeur commence par être initialisé (aléatoirement ou non).
Réseaux antagonistes génératifsEn intelligence artificielle, les réseaux antagonistes génératifs (RAG) parfois aussi appelés réseaux adverses génératifs (en anglais generative adversarial networks ou GANs) sont une classe d'algorithmes d'apprentissage non supervisé. Ces algorithmes ont été introduits par . Ils permettent de générer des images avec un fort degré de réalisme. Un GAN est un modèle génératif où deux réseaux sont placés en compétition dans un scénario de théorie des jeux. Le premier réseau est le générateur, il génère un échantillon (ex.
Évaluation des politiques publiquesL’évaluation des politiques publiques en tant que nouvel outil d’aide à la décision publique est apparue aux États-Unis dans les années 1960 avant de se développer au Royaume-Uni, dans les pays scandinaves puis dans les autres démocraties occidentales vingt ans plus tard, notamment à l’initiative de la Commission européenne, qui en a fait une exigence règlementaire systématique dans le cadre des financements alloués aux États membres à partir des années 1990.
Politique publiqueUne politique publique est une intervention de l'État ou d'une autre autorité publique (banque centrale, collectivité territoriale, ...) afin d'avoir un effet sur la société ou un territoire. Les politiques publiques sont la modalité d'action de la puissance publique. Jean-Claude Thoenig définit les politiques publiques comme les . Le terme prend un sens différent selon la discipline qui l'utilise.
Théorie de la décisionLa théorie de la décision est une théorie de mathématiques appliquées ayant pour objet la prise de décision par une entité unique. (Les questions liées à la décision collective relèvent de la théorie du choix social.) La notion de décision intertemporelle découle de la prise en compte du facteur temps dans les problématiques reliant l'offre et la demande, les disponibilités et les contraintes. Ces problématiques sont celles qui découlent des combinaisons possibles entre les disponibilités et les décisions pouvant les impliquer.
Rule-based machine learningRule-based machine learning (RBML) is a term in computer science intended to encompass any machine learning method that identifies, learns, or evolves 'rules' to store, manipulate or apply. The defining characteristic of a rule-based machine learner is the identification and utilization of a set of relational rules that collectively represent the knowledge captured by the system. This is in contrast to other machine learners that commonly identify a singular model that can be universally applied to any instance in order to make a prediction.