Requête sémantiqueLes requêtes sémantiques permettent des interrogations et des analyses de nature associative et contextuelle. Elles permettent d'extraire des informations dérivant d'éléments syntaxiques, sémantiques et structurelles contenues dans les données. Elles sont conçues pour : fournir des résultats précis, telles que la sélection distinctive d'un seul élément d'information ; répondre à des questions plus floues et ouvertes grâce au filtrage de motifs et aux systèmes basés sur le raisonnement.
Deep image priorDeep image prior is a type of convolutional neural network used to enhance a given image with no prior training data other than the image itself. A neural network is randomly initialized and used as prior to solve inverse problems such as noise reduction, super-resolution, and inpainting. Image statistics are captured by the structure of a convolutional image generator rather than by any previously learned capabilities.
Web sémantiquevignette|300px|droite|Logo du W3C pour le Web sémantique Le Web sémantique, ou toile sémantique, est une extension du Web standardisée par le World Wide Web Consortium (W3C). Ces standards encouragent l'utilisation de formats de données et de protocoles d'échange normés sur le Web, en s'appuyant sur le modèle Resource Description Framework (RDF). Le Web sémantique est par certains qualifié de Web 3.0. Selon le W3C, . L'expression a été inventée par Tim Berners-Lee (inventeur du Web et directeur du W3C), qui supervise le développement des technologies communes du Web sémantique.
Langue contrôléeEn linguistique, une langue contrôlée (LC) est généralement définie comme sous-ensemble d'une langue naturelle, dont la grammaire et le vocabulaire ont été restreints afin de réduire l'ambigüité et la complexité des textes. On distingue traditionnellement deux groupes de langues contrôlées : les LC pour les humains, qui visent à améliorer la lisibilité des documents et à en faciliter la compréhension. les LC pour les machines, qui visent à faciliter le traitement automatique de textes.
Mémoire sémantiqueEn psychologie cognitive, la mémoire sémantique est le système mnésique par lequel l'individu stocke ses connaissances générales : connaissances actuelles sur le monde, définitions de concepts abstraits La mémoire sémantique est un type de mémoire déclarative. En 1972, Endel Tulving propose de distinguer la mémoire épisodique et la mémoire sémantique comme deux composantes de la mémoire déclarative. La mémoire sémantique constitue une base de connaissances, un magasin d'informations que nous possédons tous et dont une grande partie nous est accessible rapidement et sans effort.
Langage naturelUn langage naturel, ou langage ordinaire, est une langue « normale » parlée par un être humain. Il s'oppose au langage formel, tel que le langage informatique, ainsi qu'aux langues construites. histoire des langues On désigne par langage naturel le langage parlé par les humains, apparu entre et avant notre ère.
Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Système de classeursUn système de classeurs (Learning Classifier System ou LCS en anglais) est un système d'apprentissage automatique utilisant l'apprentissage par renforcement et les algorithmes génétiques. Ils ont été introduits par Holland en 1977 et développé par Goldberg en 1989 Un système de classeurs (aussi appelé classifiers) est composé d'une base de règles, appelée classeur, associés à un poids. Chaque règle est composée d'une partie condition et d'une partie action. Le classeur commence par être initialisé (aléatoirement ou non).
Multimedia information retrievalMultimedia information retrieval (MMIR or MIR) is a research discipline of computer science that aims at extracting semantic information from multimedia data sources. Data sources include directly perceivable media such as audio, and video, indirectly perceivable sources such as text, semantic descriptions, biosignals as well as not perceivable sources such as bioinformation, stock prices, etc. The methodology of MMIR can be organized in three groups: Methods for the summarization of media content (feature extraction).
Génération automatique de textesLa génération automatique de texte (GAT) est une sous discipline de la linguistique computationnelle qui vise à exprimer sous une forme textuelle, syntaxiquement et sémantiquement correcte, une représentation formelle d'un contenu. Outre ses nombreuses applications existantes ou potentielles - par exemple pour produire automatiquement des bulletins météorologiques, ou des rapports automatisés - elle offre par ailleurs un cadre d'investigation des théories linguistiques, et particulièrement de ses mécanismes de production.